CUET CUET Mathematics 2024 - Let [x] denote the greatest integer function. Then match List-I with List-II:</p> <table class="question-table"> <thead> <tr> <th>List-I</th> <th>List-II</th> </tr> </thead> <tbody> <tr> <td>(A) |x - 1| + |x - 2| </td> <td>(I) is differentiable everywhere except at x = 0 </td> </tr> <tr> <td>(B) x - |x| </td> <td>(II) is continuous everywhere</td> </tr> <tr> <td>(C) x - [x] </td> <td>(III) is not differentiable at x = 1 </td> </tr> <tr> <td>(D) x |x| </td> <td>(IV) is differentiable at x = 1 </td> </tr> </tbody> </table> | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Continuity & Differentiability

Medium

Let [x][x] denote the greatest integer function. Then match List-I with List-II:

\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline\newline
List-I List-II
(A) x1+x2 |x - 1| + |x - 2| (I) is differentiable everywhere except at x=0 x = 0
(B) xx x - |x| (II) is continuous everywhere
(C) x[x] x - [x] (III) is not differentiable at x=1 x = 1
(D) xx x \, |x| (IV) is differentiable at x=1 x = 1

Correct Option: 3
Will be added.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question