2024 Slot 1Algebra > Easy23,−13,23\frac{2}{3},-\frac{1}{3}, \frac{2}{3}32,−31,32−23,−13,23-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}−32,−31,3223,−13,−23\frac{2}{3},-\frac{1}{3},-\frac{2}{3}32,−31,−3223,13,23\frac{2}{3}, \frac{1}{3}, \frac{2}{3}32,31,32✅ Correct Option: 1Related questions:If a⃗,b⃗\vec{a}, \vec{b}a,b and c⃗\vec{c}c are three vectors such that a⃗+b⃗+c⃗=0→\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}a+b+c=0, where a⃗\vec{a}a and b⃗\vec{b}b are unit vectors and ∣c⃗∣=2|\vec{c}|=2∣c∣=2, then the angle between the vectors b⃗\vec{b}b and c⃗\vec{c}c is :The unit vector perpendicular to each of the vectors a⃗+b⃗\vec{a}+\vec{b}a+b and a⃗−b⃗\vec{a}-\vec{b}a−b, where a⃗=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k}a=i^+j^+k^ and b⃗=i^+2j^+3k^\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}b=i^+2j^+3k^, is :The distance between the lines r⃗=i^−2j^+3k^+λ(2i^+3j^+6k^)\vec{r}=\hat{i}-2 \hat{j}+3 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})r=i^−2j^+3k^+λ(2i^+3j^+6k^) and r⃗=3i^−2j^+1k^+μ(4i^+6j^+12k^)\vec{r}=3 \hat{i}-2 \hat{j}+1 \hat{k}+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})r=3i^−2j^+1k^+μ(4i^+6j^+12k^) is :