CUET Mathematics 2024 - The distance between the lines r=i-2 j+3 k+(2 i+3 j+6 k) and r=3 i-2 j+1 k+(4 i+6 j+12 k) is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Vector Algebra

Medium

The distance between the lines r=i^2j^+3k^+λ(2i^+3j^+6k^)\vec{r}=\hat{i}-2 \hat{j}+3 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) and r=3i^2j^+1k^+μ(4i^+6j^+12k^)\vec{r}=3 \hat{i}-2 \hat{j}+1 \hat{k}+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k}) is :

Correct Option: 3
Distance Between Two Lines in 3D Space
Given Information: \newline - Line 1: r=i^2j^+3k^+λ(2i^+3j^+6k^)\vec{r} = \hat{i} - 2\hat{j} + 3\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) \newline - Line 2: r=3i^2j^+1k^+μ(4i^+6j^+12k^)\vec{r} = 3\hat{i} - 2\hat{j} + 1\hat{k} + \mu(4\hat{i} + 6\hat{j} + 12\hat{k})

Identify the direction vectors and points on each line.
Line 1: \newline - Direction vector: a=2i^+3j^+6k^\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k} \newline - Point on line: r1=i^2j^+3k^\vec{r}_1 = \hat{i} - 2\hat{j} + 3\hat{k}
Line 2: \newline - Direction vector: b=4i^+6j^+12k^\vec{b} = 4\hat{i} + 6\hat{j} + 12\hat{k} \newline - Point on line: r2=3i^2j^+1k^\vec{r}_2 = 3\hat{i} - 2\hat{j} + 1\hat{k}

Check if the direction vectors are parallel.
b=4i^+6j^+12k^=2(2i^+3j^+6k^)=2a\vec{b} = 4\hat{i} + 6\hat{j} + 12\hat{k} = 2(2\hat{i} + 3\hat{j} + 6\hat{k}) = 2\vec{a}
Since b=2a\vec{b} = 2\vec{a}, the lines are parallel.

Calculate the distance between parallel lines using the formula:
d=(r2r1)×aad = \dfrac{|(\vec{r}_2 - \vec{r}_1) \times \vec{a}|}{|\vec{a}|}
Find r2r1\vec{r}_2 - \vec{r}_1: \newline r2r1=(3i^2j^+1k^)(i^2j^+3k^)\vec{r}_2 - \vec{r}_1 = (3\hat{i} - 2\hat{j} + 1\hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k}) \newline r2r1=2i^2k^\vec{r}_2 - \vec{r}_1 = 2\hat{i} - 2\hat{k}

Calculate (r2r1)×a(\vec{r}_2 - \vec{r}_1) \times \vec{a}: \newline (r2r1)×a=(2i^2k^)×(2i^+3j^+6k^)(\vec{r}_2 - \vec{r}_1) \times \vec{a} = (2\hat{i} - 2\hat{k}) \times (2\hat{i} + 3\hat{j} + 6\hat{k})
Using the cross product formula: \newline i^j^k^202236\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -2 \\ 2 & 3 & 6 \end{vmatrix}
=i^(0×6(2)×3)j^(2×6(2)×2)+k^(2×30×2)= \hat{i}(0 \times 6 - (-2) \times 3) - \hat{j}(2 \times 6 - (-2) \times 2) + \hat{k}(2 \times 3 - 0 \times 2) \newline =i^(0+6)j^(12+4)+k^(60)= \hat{i}(0 + 6) - \hat{j}(12 + 4) + \hat{k}(6 - 0) \newline =6i^16j^+6k^= 6\hat{i} - 16\hat{j} + 6\hat{k}

Calculate (r2r1)×a|(\vec{r}_2 - \vec{r}_1) \times \vec{a}|: \newline 6i^16j^+6k^=62+(16)2+62=36+256+36=328|6\hat{i} - 16\hat{j} + 6\hat{k}| = \sqrt{6^2 + (-16)^2 + 6^2} = \sqrt{36 + 256 + 36} = \sqrt{328}
Calculate a|\vec{a}|: \newline a=2i^+3j^+6k^=22+32+62=4+9+36=49=7|\vec{a}| = |2\hat{i} + 3\hat{j} + 6\hat{k}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7

Calculate the distance:
d=(r2r1)×aa=3287d = \dfrac{|(\vec{r}_2 - \vec{r}_1) \times \vec{a}|}{|\vec{a}|} = \dfrac{\sqrt{328}}{7}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question