CUET Mathematics 2024Calculus > Easy11122233332\frac{3}{2}23✅ Correct Option: 2Related questions:For the differential equation (xlogex)dy=(logex−y)dx\left(x \log _{e} x\right) d y=\left(\log _{e} x-y\right) d x(xlogex)dy=(logex−y)dx (A) Degree of the given differential equation is 111. (B) It is a homogeneous differential equation. (C) Solution is 2ylogex+A=(logex)22y \log _{\mathrm{e}} \mathrm{x}+A=\left(\log _{\mathrm{e}} \mathrm{x}\right)^{2}2ylogex+A=(logex)2, where AAA is an arbitrary constant (D) Solution is 2ylogex+A=loge(logex)2 y \log _{e} x+A=\log _{e}\left(\log _{e} x\right)2ylogex+A=loge(logex), where AAA is an arbitrary constant Choose the correct answer from the options given below :If siny=xsin(a+y)\sin y=x \sin (a+y)siny=xsin(a+y), then dydx\frac{d y}{d x}dxdy is :Choose the correct answer from the options given below: List-IList-II(A) Integrating factor of x dy−(y+2x2) dx=0x \, dy - (y + 2x^2) \, dx = 0xdy−(y+2x2)dx=0(I) 1x\frac{1}{x}x1(B) Integrating factor of (2x2−3y) dx=x dy(2x^2 - 3y) \, dx = x \, dy(2x2−3y)dx=xdy(II) xxx(C) Integrating factor of (2y+3x2) dx+x dy=0(2y + 3x^2) \, dx + x \, dy = 0(2y+3x2)dx+xdy=0(III) x2x^2x2(D) Integrating factor of 2x dy+(3x3+2y) dx=02x \, dy + (3x^3 + 2y) \, dx = 02xdy+(3x3+2y)dx=0(IV) x3x^3x3