CUET Mathematics 2024Algebra > Easy(A), (B) and (D) only(A), (B) and (C) only(A), (B), (C) and (D)(B), (C) and (D) only✅ Correct Option: 1Related questions:If AAA is a square matrix and III is an identity matrix such that A2=AA^{2}=AA2=A, then A(I−2A)3+2A3A(I-2 A)^{3}+2 A^{3}A(I−2A)3+2A3 is equal to :For a square matrix An×nA_{n \times n}An×n (A) ∣adjA∣=∣A∣n−1|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}∣adjA∣=∣A∣n−1 (B) ∣A∣=∣adjA∣n−1|\mathrm{A}|=|\operatorname{adj} \mathrm{A}|^{\mathrm{n}-1}∣A∣=∣adjA∣n−1 (C) A(adjA)=∣A∣\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|A(adjA)=∣A∣ (D) ∣A−1∣=1∣ A∣\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}A−1=∣ A∣1If [A]3×2[ B]x×y=[C]3×1[\mathrm{A}]_{3 \times 2}[\mathrm{~B}]_{\mathrm{x} \times \mathrm{y}}=[\mathrm{C}]_{3 \times 1}[A]3×2[ B]x×y=[C]3×1, then :