CUET Mathematics 2024Calculus > Medium(A) - (I), (B) - (III), (C) - (IV), (D) - (II)(A) - (I), (B) - (IV), (C) - (III), (D) - (II)(A) - (II), (B) - (I), (C) - (III), (D) - (IV)(A) - (III), (B) - (IV), (C) - (II), (D) - (I)✅ Correct Option: 2Related questions:For the differential equation (xlogex)dy=(logex−y)dx\left(x \log _{e} x\right) d y=\left(\log _{e} x-y\right) d x(xlogex)dy=(logex−y)dx (A) Degree of the given differential equation is 111. (B) It is a homogeneous differential equation. (C) Solution is 2ylogex+A=(logex)22y \log _{\mathrm{e}} \mathrm{x}+A=\left(\log _{\mathrm{e}} \mathrm{x}\right)^{2}2ylogex+A=(logex)2, where AAA is an arbitrary constant (D) Solution is 2ylogex+A=loge(logex)2 y \log _{e} x+A=\log _{e}\left(\log _{e} x\right)2ylogex+A=loge(logex), where AAA is an arbitrary constant Choose the correct answer from the options given below :The degree of the differential equation (1−(dydx)2)32=kd2ydx2\left(1-\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{3}{2}}=k \frac{d^{2} y}{d x^{2}}(1−(dxdy)2)23=kdx2d2y is :If siny=xsin(a+y)\sin y=x \sin (a+y)siny=xsin(a+y), then dydx\frac{d y}{d x}dxdy is :