CUET Mathematics 2024 - If (a-b) *(a+b)=27 and |a|=2|b|, then |b| is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Vector Algebra

Easy

If (ab)(a+b)=27(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})=27 and a=2b|\vec{a}|=2|\vec{b}|, then b|\vec{b}| is :

Correct Option: 1
Let's find b|\vec{b}| using the given conditions.

We start by expanding the dot product (ab)(a+b)(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b}):
(ab)(a+b)=aa+abbabb(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b}
Since dot product is commutative (ab=ba\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}):
(ab)(a+b)=aabb=a2b2=27(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b}) = \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{b} = |\vec{a}|^2 - |\vec{b}|^2 = 27

Using the relationship a=2b|\vec{a}| = 2|\vec{b}|:
a2=(2b)2=4b2|\vec{a}|^2 = (2|\vec{b}|)^2 = 4|\vec{b}|^2
Substituting into our equation:
4b2b2=274|\vec{b}|^2 - |\vec{b}|^2 = 27
3b2=273|\vec{b}|^2 = 27
b2=9|\vec{b}|^2 = 9
b=3|\vec{b}| = 3
Therefore, b=3|\vec{b}| = 3.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question