Skip to main contentSkip to question navigationSkip to solution

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Matrices & Determinants

Easy

If AA is a square matrix and II is an identity matrix such that A2=AA^{2}=A, then A(I2A)3+2A3A(I-2 A)^{3}+2 A^{3} is equal to :

Correct Option: 4
If AA is a square matrix and II is an identity matrix such that A2=AA^{2}=A, then A(I2A)3+2A3A(I-2 A)^{3}+2 A^{3} is equal to:
We are given that A2=AA^2 = A, which means AA is an idempotent matrix.
First, let's find A3A^3 using the given property:
A3=A2A=AA=AA^3 = A^2 \cdot A = A \cdot A = A
We'll first find (I2A)2(I-2A)^2:
(I2A)2=(I2A)(I2A)=I22AI2IA+4A2(I-2A)^2 = (I-2A)(I-2A) = I^2 - 2A \cdot I - 2I \cdot A + 4A^2
=I2A2A+4A2= I - 2A - 2A + 4A^2
=I4A+4A2= I - 4A + 4A^2
Since A2=AA^2 = A, we have:
(I2A)2=I4A+4A=I(I-2A)^2 = I - 4A + 4A = I
Now we can calculate (I2A)3(I-2A)^3:
(I2A)3=(I2A)2(I2A)=I(I2A)=I2A(I-2A)^3 = (I-2A)^2(I-2A) = I(I-2A) = I - 2A
Next, calculate A(I2A)3A(I-2A)^3:
A(I2A)3=A(I2A)=A2A2A(I-2A)^3 = A(I-2A) = A - 2A^2
Since A2=AA^2 = A, we have:
A(I2A)3=A2A=AA(I-2A)^3 = A - 2A = -A
Finally, calculate the complete expression A(I2A)3+2A3A(I-2A)^3+2A^3:
A(I2A)3+2A3=A+2A3=A+2A=AA(I-2A)^3+2A^3 = -A + 2A^3 = -A + 2A = A
Therefore, A(I2A)3+2A3=AA(I-2A)^3+2A^3 = A

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question