CUET Mathematics 2024Algebra > MediummaximizeZ=0.08x+0.09y\operatorname{maximize} \mathrm{Z}=0.08 \mathrm{x}+0.09 \mathrm{y}maximizeZ=0.08x+0.09y x≥15000y≥25000x+y≥75000x≤yx,y≥0\begin{aligned} & x \geq 15000 \\ & y \geq 25000 \\ & x+y \geq 75000 \\ & x \leq y \\ & x, y \geq 0 \end{aligned}x≥15000y≥25000x+y≥75000x≤yx,y≥0maximizeZ=0.08x+0.09yx≥15000y≤25000x+y≥75000x≤yx,y≥0\begin{aligned} & \operatorname{maximize} Z=0.08 x+0.09 y \\ & x \geq 15000 \\ & y \leq 25000 \\ & x+y \geq 75000 \\ & x \leq y \\ & x, y \geq 0 \end{aligned}maximizeZ=0.08x+0.09yx≥15000y≤25000x+y≥75000x≤yx,y≥0maximizeZ=0.08x+0.09yx≥15000y≥25000x+y≤75000x≥yx,y≥0\begin{aligned} & \operatorname{maximize} Z=0.08 x+0.09 y \\ & x \geq 15000 \\ & y \geq 25000 \\ & x+y \leq 75000 \\ & x \geq y \\ & x, y \geq 0 \end{aligned}maximizeZ=0.08x+0.09yx≥15000y≥25000x+y≤75000x≥yx,y≥0maximize Z=0.08x+0.09yZ=0.08 x+0.09 yZ=0.08x+0.09y x≥15000x \geq 15000x≥15000 y≥25000y \geq 25000y≥25000 x+y≤75000x+y \leq 75000x+y≤75000 x≤y\mathrm{x} \leq \mathrm{y}x≤y x,y≥0x, y \geq 0x,y≥0✅ Correct Option: 4Related questions:The corner points of the feasible region determined by x+y≤8,2x+y≥8,x≥0,y≥0x+y \leq 8, 2 x+y \geq 8, x \geq 0, y \geq 0x+y≤8,2x+y≥8,x≥0,y≥0 are A(0,8),B(4,0)A(0,8), B(4,0)A(0,8),B(4,0) and C(8,0)C(8,0)C(8,0). If the objective function Z=ax+Z=a x+Z=ax+ by has its maximum value on the line segment ABA BAB, then the relation between aaa and bbb is :The feasible region represented by the constraints 4x+y≥80,x+5y≥115,3x+2y≤150,x,y≥04 x+y \geq 80, x+5 y \geq 115,3 x+2 y \leq 150, x, y \geq 04x+y≥80,x+5y≥115,3x+2y≤150,x,y≥0 of an LPP isAn objective function Z=ax+byZ=a x+b yZ=ax+by is maximum at points (8,2)(8,2)(8,2) and (4,6)(4,6)(4,6). If a≥0a \geq 0a≥0 and b≥0b \geq 0b≥0 and ab=25a b=25ab=25, then the maximum value of the function is equal to :