Skip to main contentSkip to question navigationSkip to solution

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Matrices & Determinants

Medium

If A,BA, B and CC are three singular matrices given by A=[1432a],B=[3b5a2]A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2 a\end{array}\right], B=\left[\begin{array}{ll}3 b & 5 \\ a & 2\end{array}\right] and C=[a+b+cc+1a+cc]C=\left[\begin{array}{cc}a+b+c & c+1 \\ a+c & c\end{array}\right], then the value of abca b c is :

Correct Option: 3
To find the value of abcabc, we need to find the values of aa, bb, and cc using the fact that all three matrices are singular.
A matrix is singular when its determinant equals zero.
For matrix A=[1432a]A = \begin{bmatrix} 1 & 4 \\ 3 & 2a \end{bmatrix}:
det(A)=1×2a4×3=0\det(A) = 1 \times 2a - 4 \times 3 = 0
2a12=02a - 12 = 0
a=6a = 6
For matrix B=[3b5a2]B = \begin{bmatrix} 3b & 5 \\ a & 2 \end{bmatrix}, using a=6a = 6:
det(B)=3b×25×6=0\det(B) = 3b \times 2 - 5 \times 6 = 0
6b30=06b - 30 = 0
b=5b = 5
For matrix C=[a+b+cc+1a+cc]C = \begin{bmatrix} a+b+c & c+1 \\ a+c & c \end{bmatrix}, substituting a=6a = 6 and b=5b = 5:
det(C)=(11+c)c(c+1)(6+c)=0\det(C) = (11+c)c - (c+1)(6+c) = 0
11c+c26c6c2c=011c + c^2 - 6c - 6 - c^2 - c = 0
4c6=04c - 6 = 0
c=64=32c = \dfrac{6}{4} = \dfrac{3}{2}
Therefore:
abc=6×5×32=30×32=45abc = 6 \times 5 \times \dfrac{3}{2} = 30 \times \dfrac{3}{2} = 45

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question