CUET Mathematics 2024 - For a square matrix A_n x n (A) |adj A|=|A|^n-1 (B) |A|=|adj A|^n-1 (C) A(adj A)=|A| (D) |A^-1|=1|~A| | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Matrices & Determinants

Easy

For a square matrix An×nA_{n \times n}
(A) adjA=An1|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}
(B) A=adjAn1|\mathrm{A}|=|\operatorname{adj} \mathrm{A}|^{\mathrm{n}-1}
(C) A(adjA)=A\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|
(D) A1=1 A\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}

Correct Option: 2
Option (A): adj A=An1|\text{adj}\ A| = |A|^{n-1}
To verify this, we use the relationship between AA, its inverse, and its adjoint:
A1=adj AAA^{-1} = \dfrac{\text{adj}\ A}{|A|}
Taking determinants of both sides:
A1=adj AAn|A^{-1}| = \dfrac{|\text{adj}\ A|}{|A|^n}
But we know A1=1A|A^{-1}| = \dfrac{1}{|A|}
So: adj AAn=1A\dfrac{|\text{adj}\ A|}{|A|^n} = \dfrac{1}{|A|}
Solving for adj A|\text{adj}\ A|:
adj A=An1A=An1|\text{adj}\ A| = |A|^n \cdot \dfrac{1}{|A|} = |A|^{n-1}
This confirms Option (A) is correct.

Option (B): A=adj An1|A| = |\text{adj}\ A|^{n-1}
From our previous result, adj A=An1|\text{adj}\ A| = |A|^{n-1}
If we raise both sides to power 1n1\frac{1}{n-1} (assuming n1n \neq 1):
(adj A)1n1=A(|\text{adj}\ A|)^{\frac{1}{n-1}} = |A|
This is not the same as A=adj An1|A| = |\text{adj}\ A|^{n-1}, so Option (B) is incorrect. \newline
Option (C): A(adj A)=AIA(\text{adj}\ A) = |A|I
This is a fundamental property of the adjoint matrix. When we multiply a matrix by its adjoint, we get the determinant of the matrix times the identity matrix.
Note: The original option is missing the identity matrix II, hence, option (C) is wrong

Option (D): A1=1A|A^{-1}| = \dfrac{1}{|A|}
This is true as long as AA is invertible (meaning A0|A| \neq 0).

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question