CUET Mathematics 2024 - x^n+1-x d x= | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Integrals

Medium

πxn+1xdx=\int \dfrac{\pi}{x^{n+1}-x} d x=

Correct Option: 1
We need to evaluate πxn+1xdx\int \dfrac{\pi}{x^{n+1}-x} dx

First, let's rewrite the denominator:
xn+1x=x(xn1)x^{n+1} - x = x(x^n - 1)
So our integral becomes:
πx(xn1)dx\int \dfrac{\pi}{x(x^n-1)} dx

Using partial fractions:
πx(xn1)=Ax+Bxn1\dfrac{\pi}{x(x^n-1)} = \dfrac{A}{x} + \dfrac{B}{x^n-1}
Multiplying all terms by x(xn1)x(x^n-1):
π=A(xn1)+Bx\pi = A(x^n-1) + Bx
When x=0x = 0: π=A(1)\pi = A(-1), so A=πA = -\pi
When x=1x = 1: π=B\pi = B, so B=πB = \pi
Therefore:
πxn+1x=πx+πxn1\dfrac{\pi}{x^{n+1}-x} = \dfrac{-\pi}{x} + \dfrac{\pi}{x^n-1}

Integrating each term:
πxn+1xdx=πxdx+πxn1dx\int \dfrac{\pi}{x^{n+1}-x}dx = \int \dfrac{-\pi}{x}dx + \int \dfrac{\pi}{x^n-1}dx
=πlnx+π1xn1dx= -\pi\ln|x| + \pi\int \dfrac{1}{x^n-1}dx

For the second integral, use substitution t=xnt = x^n:
dt=nxn1dxdt = nx^{n-1}dxdx=dtnxn1dx = \dfrac{dt}{nx^{n-1}}
1xn1dx=1t1dtnxn1\int \dfrac{1}{x^n-1}dx = \int \dfrac{1}{t-1} \cdot \dfrac{dt}{nx^{n-1}}
Since xn1=txx^{n-1} = \dfrac{t}{x}, we have:
1xn1dx=1nxt(t1)dt\int \dfrac{1}{x^n-1}dx = \dfrac{1}{n}\int \dfrac{x}{t(t-1)}dt

Let's try direct substitution with t=xnt = x^n:
πx(xn1)dx=πndtt(t1)\int \dfrac{\pi}{x(x^n-1)}dx = \dfrac{\pi}{n} \int \dfrac{dt}{t(t-1)}
=πn(1t11t)dt= \dfrac{\pi}{n} \int \left(\dfrac{1}{t-1} - \dfrac{1}{t}\right)dt
=πn[lnt1lnt]+C= \dfrac{\pi}{n}[\ln|t-1| - \ln|t|] + C
=πnlnt1t+C= \dfrac{\pi}{n}\ln\left|\dfrac{t-1}{t}\right| + C

Substituting back t=xnt = x^n:
πxn+1xdx=πnlnxn1xn+C\int \dfrac{\pi}{x^{n+1}-x}dx=\boxed{\dfrac{\pi}{n}\ln\left|\dfrac{x^n-1}{x^n}\right| + C}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question