CUET Mathematics 2024 - The value of the integral _ _e 2^ _e 3 e^2 x-1e^2 x+1 d x is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Integrals

Medium

The value of the integral loge2loge3e2x1e2x+1dx\int_{\log _{e} 2}^{\log _{e} 3} \frac{e^{2 x}-1}{e^{2 x}+1} d x is :

Correct Option: 2
Simplify:
e2x1e2x+1=e2x+12e2x+1=12e2x+1\dfrac{e^{2x}-1}{e^{2x}+1} = \dfrac{e^{2x}+1-2}{e^{2x}+1} = 1 - \dfrac{2}{e^{2x}+1}
So our integral becomes:
loge2loge3(12e2x+1)dx=loge2loge3dx2loge2loge31e2x+1dx\int_{\log_e 2}^{\log_e 3} \left(1 - \dfrac{2}{e^{2x}+1}\right) dx = \int_{\log_e 2}^{\log_e 3} dx - 2\int_{\log_e 2}^{\log_e 3} \dfrac{1}{e^{2x}+1} dx

The first part is straightforward:
loge2loge3dx=xloge2loge3=loge3loge2=loge32\int_{\log_e 2}^{\log_e 3} dx = x\big|_{\log_e 2}^{\log_e 3} = \log_e 3 - \log_e 2 = \log_e \dfrac{3}{2}

For the second part, we use substitution u=e2xu = e^{2x}, giving:
du=2e2xdxdu = 2e^{2x}dx and dx=du2udx = \dfrac{du}{2u}
When x=loge2x = \log_e 2, u=e2loge2=4u = e^{2\log_e 2} = 4 \newline When x=loge3x = \log_e 3, u=e2loge3=9u = e^{2\log_e 3} = 9
The integral becomes:
491u+1du2u=12491u(u+1)du\int_4^9 \dfrac{1}{u+1} \cdot \dfrac{du}{2u} = \dfrac{1}{2}\int_4^9 \dfrac{1}{u(u+1)} du

Using partial fractions:
1u(u+1)=1u1u+1\dfrac{1}{u(u+1)} = \dfrac{1}{u} - \dfrac{1}{u+1}
Therefore:
12491u(u+1)du=1249(1u1u+1)du\dfrac{1}{2}\int_4^9 \dfrac{1}{u(u+1)} du = \dfrac{1}{2}\int_4^9 \left(\dfrac{1}{u} - \dfrac{1}{u+1}\right) du
=12[lnulnu+1]49= \dfrac{1}{2}\left[\ln|u| - \ln|u+1|\right]_4^9
=12[lnuu+1]49= \dfrac{1}{2}\left[\ln\left|\dfrac{u}{u+1}\right|\right]_4^9
=12[ln910ln45]= \dfrac{1}{2}\left[\ln\left|\dfrac{9}{10}\right| - \ln\left|\dfrac{4}{5}\right|\right]
=12ln9/104/5=12ln95104=12ln4540=12ln98= \dfrac{1}{2}\ln\left|\dfrac{9/10}{4/5}\right| = \dfrac{1}{2}\ln\left|\dfrac{9 \cdot 5}{10 \cdot 4}\right| = \dfrac{1}{2}\ln\left|\dfrac{45}{40}\right| = \dfrac{1}{2}\ln\left|\dfrac{9}{8}\right|

Combining the results:
loge2loge3e2x1e2x+1dx=loge32ln98\int_{\log_e 2}^{\log_e 3} \dfrac{e^{2x}-1}{e^{2x}+1} dx = \log_e \dfrac{3}{2} - \ln\dfrac{9}{8}
=ln32ln98=ln(3/29/8)=ln(3829)=ln(2418)=ln(43)= \ln\dfrac{3}{2} - \ln\dfrac{9}{8} = \ln\left(\dfrac{3/2}{9/8}\right) = \ln\left(\dfrac{3 \cdot 8}{2 \cdot 9}\right) = \ln\left(\dfrac{24}{18}\right) = \ln\left(\dfrac{4}{3}\right)
The value of the integral is ln(43)=loge4loge3\ln\left(\dfrac{4}{3}\right) = \log _{e} 4-\log _{e} 3

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question