CUET Mathematics 2024 - _0^/2 1- xcosec x+ x d x= | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Integrals

Medium

0π21cotxcosecx+cosxdx=\int_{0}^{\frac{\pi}{2}} \frac{1-\cot x}{\operatorname{cosec} x+\cos x} d x=

Correct Option: 1
0π21cotxcosecx+cosxdx\int_{0}^{\frac{\pi}{2}} \dfrac{1-\cot x}{\operatorname{cosec} x+\cos x} dx
Let's simplify the integrand by converting everything in terms of sinx\sin x and cosx\cos x.
Remember that cotx=cosxsinx\cot x = \dfrac{\cos x}{\sin x} and cosecx=1sinx\operatorname{cosec} x = \dfrac{1}{\sin x}.

Substituting these into our integrand:
1cotxcosecx+cosx=1cosxsinx1sinx+cosx\dfrac{1-\cot x}{\operatorname{cosec} x+\cos x} = \dfrac{1-\dfrac{\cos x}{\sin x}}{\dfrac{1}{\sin x}+\cos x}
Simplifying the numerator:
1cosxsinx=sinxcosxsinx1-\dfrac{\cos x}{\sin x} = \dfrac{\sin x - \cos x}{\sin x}
Now our integrand becomes:
sinxcosxsinx1sinx+cosx=sinxcosxsinxsinx1+sinxcosx=sinxcosx1+sinxcosx\dfrac{\dfrac{\sin x - \cos x}{\sin x}}{\dfrac{1}{\sin x}+\cos x} = \dfrac{\sin x - \cos x}{\sin x} \cdot \dfrac{\sin x}{1+\sin x \cos x} = \dfrac{\sin x - \cos x}{1+\sin x \cos x}

Let's use the substitution u=π2xu = \dfrac{\pi}{2} - x, then: \newline - du=dxdu = -dx \newline - When x=0x = 0, u=π2u = \dfrac{\pi}{2} \newline - When x=π2x = \dfrac{\pi}{2}, u=0u = 0
Under this substitution: \newline - sinu=cosx\sin u = \cos x \newline - cosu=sinx\cos u = \sin x

Applying the substitution to the integral:
0π2sinxcosx1+sinxcosxdx=π20cosusinu1+cosusinu(du)=0π2sinucosu1+sinucosudu\int_{0}^{\frac{\pi}{2}} \dfrac{\sin x - \cos x}{1+\sin x \cos x} dx = \int_{\frac{\pi}{2}}^{0} \dfrac{\cos u - \sin u}{1+\cos u \sin u} (-du) = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin u - \cos u}{1+\sin u \cos u} du

Let's call our original integral II:
I=0π2sinxcosx1+sinxcosxdxI = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin x - \cos x}{1+\sin x \cos x} dx
From our substitution, we also know:
I=0π2cosusinu1+sinucosuduI = \int_{0}^{\frac{\pi}{2}} \dfrac{\cos u - \sin u}{1+\sin u \cos u} du
Renaming uu back to xx in the second integral:
I=0π2cosxsinx1+sinxcosxdxI = \int_{0}^{\frac{\pi}{2}} \dfrac{\cos x - \sin x}{1+\sin x \cos x} dx
Adding these equal values:
2I=0π2sinxcosx1+sinxcosxdx+0π2cosxsinx1+sinxcosxdx2I = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin x - \cos x}{1+\sin x \cos x} dx + \int_{0}^{\frac{\pi}{2}} \dfrac{\cos x - \sin x}{1+\sin x \cos x} dx
2I=0π2(sinxcosx)+(cosxsinx)1+sinxcosxdx=0π201+sinxcosxdx=02I = \int_{0}^{\frac{\pi}{2}} \dfrac{(\sin x - \cos x) + (\cos x - \sin x)}{1+\sin x \cos x} dx = \int_{0}^{\frac{\pi}{2}} \dfrac{0}{1+\sin x \cos x} dx = 0

Therefore, I=0I = 0
0π21cotxcosecx+cosxdx=0\int_{0}^{\frac{\pi}{2}} \dfrac{1-\cot x}{\operatorname{cosec} x+\cos x} dx = 0

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question