CUET Mathematics 2024 - The area of the region bounded by the lines x7 sqrt(3) a+y/b=4, x=0 and y=0 is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Application of Integrals

Medium

The area of the region bounded by the lines x73a+yb=4,x=0\frac{x}{7 \sqrt{3} a}+\frac{y}{b}=4, x=0 and y=0y=0 is :

Correct Option: 1
Let's find the intercepts of the line:
x-intercept (when y=0y = 0):
x73a+0b=4\dfrac{x}{7 \sqrt{3} a}+\dfrac{0}{b}=4
x73a=4\dfrac{x}{7 \sqrt{3} a}=4
x=283ax = 28\sqrt{3}a
y-intercept (when x=0x = 0):
073a+yb=4\dfrac{0}{7 \sqrt{3} a}+\dfrac{y}{b}=4
yb=4\dfrac{y}{b}=4
y=4by = 4b

The triangle has vertices at (0,0)(0,0), (283a,0)(28\sqrt{3}a, 0), and (0,4b)(0, 4b).
Area of the triangle =12×base×height= \dfrac{1}{2} \times \text{base} \times \text{height}
=12×283a×4b= \dfrac{1}{2} \times 28\sqrt{3}a \times 4b
=12×1123ab= \dfrac{1}{2} \times 112\sqrt{3}ab
=563ab= 56\sqrt{3}ab square units

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question