2024 Slot 1Calculus > Medium66π66 \pi66π6.6π6.6 \pi6.6π3.3π3.3 \pi3.3π4.4π4.4 \pi4.4π✅ Correct Option: 2Related questions:If a function f(x)=x2+bx+1f(x)=x^{2}+b x+1f(x)=x2+bx+1 is increasing in the interval [1,2][1,2][1,2], then the least value of bbb is :For the function f(x)=2x3−9x2+12x−5f(x) = 2x^3 - 9x^2 + 12x - 5f(x)=2x3−9x2+12x−5, x∈[0,3]x \in [0, 3]x∈[0,3], match List-I with List-II : List-IList-IIA. Absolute maximum value(I) 333B. Absolute minimum value(II) 000C. Point of maxima(III) −5-5−5D. Point of minima(IV) 444f(x)=sinx+12cos2x in [0,π2]f(x)=\sin x+\frac{1}{2} \cos 2 x \text { in }\left[0, \frac{\pi}{2}\right]f(x)=sinx+21cos2x in [0,2π] (A) f′(x)=cosx−sin2xf^{\prime}(x)=\cos x-\sin 2 xf′(x)=cosx−sin2x (B) The critical points of the function are x=π6x=\frac{\pi}{6}x=6π and x=π2x=\frac{\pi}{2}x=2π (C) The minimum value of the function is 222 (D) The maximum value of the function is 34\frac{3}{4}43 Choose the correct answer from the options given below :