CUET Mathematics 2024Algebra > Medium16i^+26j^+16k^\frac{1}{\sqrt{6}} \hat{i}+\frac{2}{\sqrt{6}} \hat{\mathrm{j}}+\frac{1}{\sqrt{6}} \hat{\mathrm{k}}61i^+62j^+61k^−16i^+16j^−16k^-\frac{1}{\sqrt{6}} \hat{\mathrm{i}}+\frac{1}{\sqrt{6}} \hat{\mathrm{j}}-\frac{1}{\sqrt{6}} \hat{\mathrm{k}}−61i^+61j^−61k^−16i^+26j^+26k^-\frac{1}{\sqrt{6}} \hat{\mathrm{i}}+\frac{2}{\sqrt{6}} \hat{\mathrm{j}}+\frac{2}{\sqrt{6}} \hat{\mathrm{k}}−61i^+62j^+62k^−16i^+26j^−16k^-\frac{1}{\sqrt{6}} \hat{\mathrm{i}}+\frac{2}{\sqrt{6}} \hat{\mathrm{j}}-\frac{1}{\sqrt{6}} \hat{\mathrm{k}}−61i^+62j^−61k^✅ Correct Option: 4Related questions:The angle between two lines whose direction ratios are propotional to 1,1,−21,1,-21,1,−2 and (3−1),(−3−1),−4(\sqrt{3}-1),(-\sqrt{3}-1),-4(3−1),(−3−1),−4 is :The direction cosines of the line which is perpendicular to the lines with direction ratios 1,−2,−21,-2,-21,−2,−2 and 0,2,10,2,10,2,1 are :Which of the following cannot be the direction ratios of the straight line x−32=2−y3=z+4−1\frac{x-3}{2}=\frac{2-y}{3}=\frac{z+4}{-1}2x−3=32−y=−1z+4 ?