2024 Slot 1Algebra > Medium16i^+26j^+16k^\frac{1}{\sqrt{6}} \hat{i}+\frac{2}{\sqrt{6}} \hat{\mathrm{j}}+\frac{1}{\sqrt{6}} \hat{\mathrm{k}}61i^+62j^+61k^−16i^+16j^−16k^-\frac{1}{\sqrt{6}} \hat{\mathrm{i}}+\frac{1}{\sqrt{6}} \hat{\mathrm{j}}-\frac{1}{\sqrt{6}} \hat{\mathrm{k}}−61i^+61j^−61k^−16i^+26j^+26k^-\frac{1}{\sqrt{6}} \hat{\mathrm{i}}+\frac{2}{\sqrt{6}} \hat{\mathrm{j}}+\frac{2}{\sqrt{6}} \hat{\mathrm{k}}−61i^+62j^+62k^−16i^+26j^−16k^-\frac{1}{\sqrt{6}} \hat{\mathrm{i}}+\frac{2}{\sqrt{6}} \hat{\mathrm{j}}-\frac{1}{\sqrt{6}} \hat{\mathrm{k}}−61i^+62j^−61k^✅ Correct Option: 4Related questions:If a⃗,b⃗\vec{a}, \vec{b}a,b and c⃗\vec{c}c are three vectors such that a⃗+b⃗+c⃗=0→\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}a+b+c=0, where a⃗\vec{a}a and b⃗\vec{b}b are unit vectors and ∣c⃗∣=2|\vec{c}|=2∣c∣=2, then the angle between the vectors b⃗\vec{b}b and c⃗\vec{c}c is :The direction cosines of the line which is perpendicular to the lines with direction ratios 1,−2,−21,-2,-21,−2,−2 and 0,2,10,2,10,2,1 are :The distance between the lines r⃗=i^−2j^+3k^+λ(2i^+3j^+6k^)\vec{r}=\hat{i}-2 \hat{j}+3 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})r=i^−2j^+3k^+λ(2i^+3j^+6k^) and r⃗=3i^−2j^+1k^+μ(4i^+6j^+12k^)\vec{r}=3 \hat{i}-2 \hat{j}+1 \hat{k}+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})r=3i^−2j^+1k^+μ(4i^+6j^+12k^) is :