Skip to main contentSkip to question navigationSkip to solution

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Vector Algebra

Medium

The unit vector perpendicular to each of the vectors a+b\vec{a}+\vec{b} and ab\vec{a}-\vec{b}, where a=i^+j^+k^\vec{a}=\hat{i}+\hat{j}+\hat{k} and b=i^+2j^+3k^\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}, is :

Correct Option: 4
To find the unit vector perpendicular to both a+b\vec{a}+\vec{b} and ab\vec{a}-\vec{b}, we need to calculate their cross product and then normalize it.
Given: \newline a=i^+j^+k^\vec{a} = \hat{i} + \hat{j} + \hat{k} \newline b=i^+2j^+3k^\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}
Let's calculate a+b\vec{a}+\vec{b} and ab\vec{a}-\vec{b}:
a+b=(i^+j^+k^)+(i^+2j^+3k^)=2i^+3j^+4k^\vec{a} + \vec{b} = (\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) = 2\hat{i} + 3\hat{j} + 4\hat{k}
ab=(i^+j^+k^)(i^+2j^+3k^)=j^2k^\vec{a} - \vec{b} = (\hat{i} + \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = -\hat{j} - 2\hat{k}
A vector perpendicular to both would be their cross product: \newline (a+b)×(ab)(\vec{a}+\vec{b}) \times (\vec{a}-\vec{b})
Computing this cross product using the determinant: \newline i^j^k^234012\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix}
=(3×(2)4×(1))i^(2×(2)4×0)j^+(2×(1)3×0)k^= (3 \times (-2) - 4 \times (-1))\hat{i} - (2 \times (-2) - 4 \times 0)\hat{j} + (2 \times (-1) - 3 \times 0)\hat{k}
=(6+4)i^(4)j^+(2)k^= (-6 + 4)\hat{i} - (-4)\hat{j} + (-2)\hat{k}
=2i^+4j^2k^= -2\hat{i} + 4\hat{j} - 2\hat{k}
To make this a unit vector, we divide by its magnitude:
Magnitude = (2)2+42+(2)2=4+16+4=24=26\sqrt{(-2)^2 + 4^2 + (-2)^2} = \sqrt{4 + 16 + 4} = \sqrt{24} = 2\sqrt{6}
Therefore, the unit vector is:
126(2i^+4j^2k^)=16(i^+2j^k^)\dfrac{1}{2\sqrt{6}}(-2\hat{i} + 4\hat{j} - 2\hat{k}) = \dfrac{1}{\sqrt{6}}(-\hat{i} + 2\hat{j} - \hat{k})

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question