CUET Mathematics 2024 - If P=[arrayr-1 \\ 2 \\ 1array] and Q=[arraylll2 & -4 & 1array] are two matrices, then (P Q)^ will be : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Matrices & Determinants

Easy

If P=[121]P=\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right] and Q=[241]Q=\left[\begin{array}{lll}2 & -4 & 1\end{array}\right] are two matrices, then (PQ)(P Q)^{\prime} will be :

Correct Option: 2
Let's find (PQ)(PQ)' where P=[121]P=\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} and Q=[241]Q=\begin{bmatrix} 2 & -4 & 1 \end{bmatrix}.

When multiplying a 3×13 \times 1 matrix with a 1×31 \times 3 matrix, we get a 3×33 \times 3 matrix.
PQ=[121][241]PQ = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & -4 & 1 \end{bmatrix}
=[(1)(2)(1)(4)(1)(1)(2)(2)(2)(4)(2)(1)(1)(2)(1)(4)(1)(1)]= \begin{bmatrix} (-1)(2) & (-1)(-4) & (-1)(1) \\ (2)(2) & (2)(-4) & (2)(1) \\ (1)(2) & (1)(-4) & (1)(1) \end{bmatrix}
=[241482241]= \begin{bmatrix} -2 & 4 & -1 \\ 4 & -8 & 2 \\ 2 & -4 & 1 \end{bmatrix}

To find (PQ)(PQ)', we transpose the matrix by converting rows to columns:
(PQ)=[242484121](PQ)' = \begin{bmatrix} -2 & 4 & 2 \\ 4 & -8 & -4 \\ -1 & 2 & 1 \end{bmatrix}

Alternatively, we can use the property: (PQ)=QP(PQ)' = Q'P'
P=[121]P' = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}
Q=[241]Q' = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}
QP=[241][121]=[242484121]Q'P' = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 4 & 2 \\ 4 & -8 & -4 \\ -1 & 2 & 1 \end{bmatrix}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question