CUET Mathematics 2024 - If t=e^2 x and y= _e t^2, then d^2 yd x^2 is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Continuity & Differentiability

Medium

If t=e2xt=e^{2 x} and y=loget2y=\log _{e} t^{2}, then d2ydx2\frac{d^{2} y}{d x^{2}} is :

Correct Option: 1
To find d2ydx2\dfrac{d^2y}{dx^2} when t=e2xt=e^{2x} and y=loget2y=\log_e t^2:
First, let's substitute the value of tt into the expression for yy: \newline y=loget2=loge(e2x)2=logee4x=4xy = \log_e t^2 = \log_e (e^{2x})^2 = \log_e e^{4x} = 4x
This uses the property logeea=a\log_e e^a = a.

Finding the first derivative:
Since y=4xy = 4x
dydx=4\dfrac{dy}{dx} = 4

Finding the second derivative:
Since dydx=4\dfrac{dy}{dx} = 4 (a constant)
d2ydx2=0\dfrac{d^2y}{dx^2} = 0

Alternatively, we could verify using the chain rule: \newline y=loget2=2logety = \log_e t^2 = 2\log_e t
dydt=2t\dfrac{dy}{dt} = \dfrac{2}{t}
dtdx=2e2x=2t\dfrac{dt}{dx} = 2e^{2x} = 2t
dydx=dydtdtdx=2t2t=4\dfrac{dy}{dx} = \dfrac{dy}{dt} \cdot \dfrac{dt}{dx} = \dfrac{2}{t} \cdot 2t = 4
This confirms our answer that d2ydx2=0\dfrac{d^2y}{dx^2} = 0

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question