Skip to main contentSkip to question navigationSkip to solution

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Continuity & Differentiability

Easy

If f(x)f(x), defined by f(x)={kx+1 if xπcosx if x>πf(x)=\left\{\begin{array}{lll}k x+1 & \text { if } & x \leq \pi \\ \cos x & \text { if } & x>\pi\end{array}\right. is continuous at x=πx=\pi, then the value of kk is :

Correct Option: 4
Left-hand limit as xx approaches π\pi:
limxπf(x)=limxπ(kx+1)=kπ+1\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^-}(kx + 1) = k\pi + 1
Right-hand limit as xx approaches π\pi:
limxπ+f(x)=limxπ+cosx=cosπ=1\lim_{x \to \pi^+} f(x) = \lim_{x \to \pi^+} \cos x = \cos \pi = -1
For continuity at x=πx = \pi, these limits must be equal:
kπ+1=1k\pi + 1 = -1
kπ=2k\pi = -2
k=2πk = \dfrac{-2}{\pi}
Verification: When x=πx = \pi
Left side: f(π)=kπ+1=2ππ+1=2+1=1f(\pi) = k\pi + 1 = \dfrac{-2}{\pi} \cdot \pi + 1 = -2 + 1 = -1
Right side: cos(π)=1\cos(\pi) = -1
Since both sides equal 1-1, the value of kk is 2π\dfrac{-2}{\pi}.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question