CUET Mathematics 2024 - For the differential equation (x _e x) d y=( _e x-y) d x (A) Degree of the given differential equation is 1. (B) It is a homogeneous differential equation. (C) Solution is 2y _e x+A=( _e x)^2, where A is an arbitrary constant (D) Solution is 2 y _e x+A= _e( _e x), where A is an arbitrary constant Choose the correct answer from the options given below : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Differential Equations

Medium

For the differential equation (xlogex)dy=(logexy)dx\left(x \log _{e} x\right) d y=\left(\log _{e} x-y\right) d x
(A) Degree of the given differential equation is 11.
(B) It is a homogeneous differential equation.
(C) Solution is 2ylogex+A=(logex)22y \log _{\mathrm{e}} \mathrm{x}+A=\left(\log _{\mathrm{e}} \mathrm{x}\right)^{2}, where AA is an arbitrary constant
(D) Solution is 2ylogex+A=loge(logex)2 y \log _{e} x+A=\log _{e}\left(\log _{e} x\right), where AA is an arbitrary constant
Choose the correct answer from the options given below :

Correct Option: 1
Option (A): Degree of the given differential equation is 1.
Rearranging the equation to standard form:
dydx=logexyxlogex\dfrac{dy}{dx} = \dfrac{\log_e x - y}{x \log_e x}
Since dydx\dfrac{dy}{dx} has a power of 1, the degree is 1.
Option (A) is correct.

Option (B): It is a homogeneous differential equation.
A differential equation is homogeneous if f(tx,ty)=f(x,y)f(tx,ty) = f(x,y) for any non-zero t.
For our equation: f(x,y)=logexyxlogexf(x,y) = \dfrac{\log_e x - y}{x \log_e x}
Substituting (tx,ty)(tx,ty):
f(tx,ty)=loge(tx)tytxloge(tx)=loget+logextytx(loget+logex)f(tx,ty) = \dfrac{\log_e(tx) - ty}{tx \log_e(tx)} = \dfrac{\log_e t + \log_e x - ty}{tx(\log_e t + \log_e x)}
This is not equal to f(x,y)f(x,y) due to the loget\log_e t terms.
Option (B) is incorrect.

Options (C) & (D): Solving the equation
Rearranging to group terms: \newline (xlogex)dy+ydx=logexdx(x \log_e x)dy + y\,dx = \log_e x\,dx
Let's define u=logexu = \log_e x, which means du=dxxdu = \dfrac{dx}{x}.
Substituting, our equation becomes: \newline udy+ydu=uduu\,dy + y\,du = u\,du
This is the differential of the product uyuy: \newline d(uy)=udy+ydu=udud(uy) = u\,dy + y\,du = u\,du
Integrating both sides: \newline uy=u22+Cuy = \dfrac{u^2}{2} + C
Substituting back u=logexu = \log_e x: \newline ylogex=(logex)22+Cy \log_e x = \dfrac{(\log_e x)^2}{2} + C
Multiplying by 2: \newline 2ylogex=(logex)2+2C2y \log_e x = (\log_e x)^2 + 2C
Let A=2CA = 2C, so: \newline 2ylogex+A=(logex)22y \log_e x + A = (\log_e x)^2
Option (C) is correct, and Option (D) is incorrect.

\newline The correct options are (A) and (C).

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question