CUET Mathematics 2024Calculus > Easy5xloge55^{x} \log _{e} 55xloge55x(loge5)25^{x}\left(\log _{e} 5\right)^{2}5x(loge5)25xloge5\frac{5^{\mathrm{x}}}{\log _{\mathrm{e}} 5}loge55x5x(loge5)2\frac{5^{\mathrm{x}}}{\left(\log _{\mathrm{e}} 5\right)^{2}}(loge5)25x✅ Correct Option: 4Related questions:Let [x][x][x] denote the greatest integer function. Then match List-I with List-II: List-IList-II(A) ∣x−1∣+∣x−2∣|x - 1| + |x - 2|∣x−1∣+∣x−2∣(I) is differentiable everywhere except at x=0x = 0x=0(B) x−∣x∣x - |x|x−∣x∣(II) is continuous everywhere(C) x−[x]x - [x]x−[x](III) is not differentiable at x=1x = 1x=1(D) x ∣x∣x \, |x|x∣x∣(IV) is differentiable at x=1x = 1x=1If f(x)f(x)f(x), defined by f(x)={kx+1 if x≤πcosx if x>πf(x)=\left\{\begin{array}{lll}k x+1 & \text { if } & x \leq \pi \\ \cos x & \text { if } & x>\pi\end{array}\right.f(x)={kx+1cosx if if x≤πx>π is continuous at x=πx=\pix=π, then the value of kkk is :If t=e2xt=e^{2 x}t=e2x and y=loget2y=\log _{e} t^{2}y=loget2, then d2ydx2\frac{d^{2} y}{d x^{2}}dx2d2y is :