CUET Mathematics 2024 - The second order derivative of which of the following functions is 5^x ? | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Continuity & Differentiability

Easy

The second order derivative of which of the following functions is 5x5^{\mathrm{x}} ?

Correct Option: 4
The derivative of axa^{x} is given by: \newline ddxax=axlna\frac{d}{dx}a^{x}=a^{x}\ln{a}

Consider option 11. \newline y=loge55xloge5=(loge5)25xy^{\prime}=\log _{e} 5 \cdot 5^{x} \log _{e} 5=\left(\log _{e} 5\right)^{2} \cdot 5^{x} \newline y=(loge5)25xloge5=(loge5)35xy^{\prime \prime}=\left(\log _{e} 5\right)^{2} \cdot 5^{x} \log _{e} 5=\left(\log _{e} 5\right)^{3} \cdot 5^{x}

Consider option 22. \newline y=1(loge5)25xloge5=5xloge5y^{\prime}=\frac{1}{(\log_{e}5)^{2}}\cdot 5^{x}\cdot \log_{e}{5}=\frac{5^{x}}{\log_{e}{5}} \newline y=1loge55xloge5=5xy^{\prime\prime}=\frac{1}{\log_{e}{5}}\cdot 5^{x}\cdot \log_{e}{5}=\boxed{5^{x}}

Consider option 33. \newline y=1loge55xloge5=5xy^{\prime}=\frac{1}{\log_{e}{5}}\cdot 5^{x}\cdot \log_{e}{5}=5^{x} \newline y=5xloge5y^{\prime\prime}=5^{x}\log_{e}{5}

Consider option 44. \newline y=(loge5)25xloge5=5x(loge5)3y^{\prime}=(\log_{e}{5})^{2}\cdot 5^{x}\cdot \log_{e}{5}=5^{x}(\log_{e}{5})^{3} \newline y=(loge5)35xloge5=5x(loge5)4y^{\prime\prime}=(\log_{e}{5})^{3}\cdot 5^{x}\cdot \log_{e}{5}=5^{x}(\log_{e}{5})^{4}

Hence, option 2 is correct. You can also try integrating it twice too!

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question