CUET Mathematics 2024 - An objective function Z=a x+b y is maximum at points (8,2) and (4,6). If a ≥ 0 and b ≥ 0 and a b=25, then the maximum value of the function is equal to : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Linear Programming

Easy

An objective function Z=ax+byZ=a x+b y is maximum at points (8,2)(8,2) and (4,6)(4,6). If a0a \geq 0 and b0b \geq 0 and ab=25a b=25, then the maximum value of the function is equal to :

Correct Option: 2
Since both points (8,2)(8,2) and (4,6)(4,6) give the same maximum value of ZZ, we can write:
Zmax=a(8)+b(2)=a(4)+b(6)Z_{max} = a(8) + b(2) = a(4) + b(6) \newline 8a+2b=4a+6b8a + 2b = 4a + 6b \newline 4a=4b4a = 4b \newline a=ba = b

Using the constraint ab=25ab = 25 and knowing that a=ba = b:
a2=25a^2 = 25 \newline a=5a = 5 (since a0a \geq 0) \newline Thus, b=5b = 5 as well.

Calculating the maximum value:
Zmax=a(8)+b(2)=5(8)+5(2)=40+10=50Z_{max} = a(8) + b(2) = 5(8) + 5(2) = 40 + 10 = 50
We can verify using the second point: Zmax=5(4)+5(6)=20+30=50Z_{max} = 5(4) + 5(6) = 20 + 30 = 50
Therefore, the maximum value of the function is 5050.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question