CUET Mathematics 2024 - If the random variable X has the following distribution: Match List-I with List-II: | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Probability

Easy

If the random variable X X has the following distribution:
X X 0 1 2 otherwise
P(X) P(X) k k 2k 2k 3k 3k 0 0
Match List-I with List-II:
List-I List-II
(A) k k (I) 56 \frac{5}{6}
(B) P(X<2) P(X < 2) (II) 43 \frac{4}{3}
(C) E(X) E(X) (III) 12 \frac{1}{2}
(D) P(1X2) P(1 \leq X \leq 2) (IV) 16 \frac{1}{6}

Correct Option: 2
First, we need to find the value of kk.
For any probability distribution, the sum of all probabilities must equal 1:
P(X=0)+P(X=1)+P(X=2)=1P(X = 0) + P(X = 1) + P(X = 2) = 1
k+2k+3k=1k + 2k + 3k = 1
6k=16k = 1
k=16k = \dfrac{1}{6}

Next, let's find P(X<2)P(X < 2):
P(X<2)=P(X=0)+P(X=1)P(X < 2) = P(X = 0) + P(X = 1)
P(X<2)=k+2k=3k=316=12P(X < 2) = k + 2k = 3k = 3 \cdot \dfrac{1}{6} = \dfrac{1}{2}

For the expected value E(X)E(X):
E(X)=[xP(X=x)]E(X) = \sum[x \cdot P(X = x)]
E(X)=0k+12k+23kE(X) = 0 \cdot k + 1 \cdot 2k + 2 \cdot 3k
E(X)=2k+6k=8k=816=43E(X) = 2k + 6k = 8k = 8 \cdot \dfrac{1}{6} = \dfrac{4}{3}

For P(1X2)P(1 \leq X \leq 2):
P(1X2)=P(X=1)+P(X=2)P(1 \leq X \leq 2) = P(X = 1) + P(X = 2)
P(1X2)=2k+3k=5k=516=56P(1 \leq X \leq 2) = 2k + 3k = 5k = 5 \cdot \dfrac{1}{6} = \dfrac{5}{6}

Matching the lists:
(A) k=16k = \dfrac{1}{6} matches with (IV)
(B) P(X<2)=12P(X < 2) = \dfrac{1}{2} matches with (III)
(C) E(X)=43E(X) = \dfrac{4}{3} matches with (II)
(D) P(1X2)=56P(1 \leq X \leq 2) = \dfrac{5}{6} matches with (I)

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question