CUET Mathematics 2024 - =|arrayccc1 & x & 1 \\ - x & 1 & x \\ -1 & - x & 1array| (A) =2(1- ^2 x) (B) =2(2- ^2 x) (C) Minimum value of is 2 (D) Maximum value of is 4 Choose the correct answer from the options given below : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Matrices & Determinants

Easy

Δ=1cosx1cosx1cosx1cosx1\Delta=\left|\begin{array}{ccc}1 & \cos x & 1 \\ -\cos x & 1 & \cos x \\ -1 & -\cos x & 1\end{array}\right|
(A) Δ=2(1cos2x)\Delta=2\left(1-\cos ^{2} x\right)
(B) Δ=2(2sin2x)\Delta=2\left(2-\sin ^{2} x\right)
(C) Minimum value of Δ\Delta is 22
(D) Maximum value of Δ\Delta is 44
Choose the correct answer from the options given below :

Correct Option: 4
We need to calculate the determinant Δ=1cosx1cosx1cosx1cosx1\Delta=\left|\begin{array}{ccc}1 & \cos x & 1 \\ -\cos x & 1 & \cos x \\ -1 & -\cos x & 1\end{array}\right|

Expanding the determinant using cofactor expansion along the first row:
Δ=11cosxcosx1cosxcosxcosx11+1cosx11cosx\Delta = 1 \cdot \begin{vmatrix} 1 & \cos x \\ -\cos x & 1 \end{vmatrix} - \cos x \cdot \begin{vmatrix} -\cos x & \cos x \\ -1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} -\cos x & 1 \\ -1 & -\cos x \end{vmatrix}

Calculating each 2×2 determinant:
1cosxcosx1=11cosx(cosx)=1+cos2x\begin{vmatrix} 1 & \cos x \\ -\cos x & 1 \end{vmatrix} = 1 \cdot 1 - \cos x \cdot (-\cos x) = 1 + \cos^2 x
cosxcosx11=(cosx)1cosx(1)=cosx+cosx=0\begin{vmatrix} -\cos x & \cos x \\ -1 & 1 \end{vmatrix} = (-\cos x) \cdot 1 - \cos x \cdot (-1) = -\cos x + \cos x = 0
cosx11cosx=(cosx)(cosx)1(1)=cos2x+1\begin{vmatrix} -\cos x & 1 \\ -1 & -\cos x \end{vmatrix} = (-\cos x) \cdot (-\cos x) - 1 \cdot (-1) = \cos^2 x + 1

Substituting back into the original equation:
Δ=1(1+cos2x)cosx0+1(1+cos2x)\Delta = 1 \cdot (1 + \cos^2 x) - \cos x \cdot 0 + 1 \cdot (1 + \cos^2 x)
Δ=1+cos2x+1+cos2x\Delta = 1 + \cos^2 x + 1 + \cos^2 x
Δ=2+2cos2x\Delta = 2 + 2\cos^2 x

Using the identity cos2x=1sin2x\cos^2 x = 1 - \sin^2 x:
Δ=2+2(1sin2x)\Delta = 2 + 2(1 - \sin^2 x)
Δ=2+22sin2x\Delta = 2 + 2 - 2\sin^2 x
Δ=42sin2x\Delta = 4 - 2\sin^2 x
Δ=2(2sin2x)\Delta = 2(2 - \sin^2 x)

Since 0sin2x10 \leq \sin^2 x \leq 1 for all real values of xx: \newline - Maximum value: when sin2x=0\sin^2 x = 0, giving Δmax=2(20)=4\Delta_{max} = 2(2 - 0) = 4 \newline - Minimum value: when sin2x=1\sin^2 x = 1, giving Δmin=2(21)=2\Delta_{min} = 2(2 - 1) = 2

The correct options are (B), (C), and (D).

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question