CUET Mathematics 2024 - e^x(2 x+12 x) dx | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Calculus
>
Integrals

Medium

ex(2x+12x)dx\int \mathrm{e}^{\mathrm{x}}\left(\frac{2 \mathrm{x}+1}{2 \sqrt{\mathrm{x}}}\right) \mathrm{dx}

Correct Option: 4
First, let's simplify the expression:
ex(2x+12x)dx=ex2x+12x1/2dx\int e^x \left(\dfrac{2x+1}{2\sqrt{x}}\right) dx = \int e^x \cdot \dfrac{2x+1}{2} \cdot x^{-1/2} dx
=ex(2x2x1/2+12x1/2)dx= \int e^x \cdot \left(\dfrac{2x}{2} \cdot x^{-1/2} + \dfrac{1}{2} \cdot x^{-1/2}\right) dx
=ex(x1/2+12x1/2)dx= \int e^x \cdot \left(x^{1/2} + \dfrac{1}{2} \cdot x^{-1/2}\right) dx

Splitting the integral:
ex(x1/2+12x1/2)dx=exx1/2dx+ex12x1/2dx\int e^x \cdot \left(x^{1/2} + \dfrac{1}{2} \cdot x^{-1/2}\right) dx = \int e^x \cdot x^{1/2} dx + \int e^x \cdot \dfrac{1}{2} \cdot x^{-1/2} dx

Using integration by parts for the first part with:
u=x1/2u = x^{1/2} so du=12x1/2dxdu = \dfrac{1}{2} \cdot x^{-1/2} dx
dv=exdxdv = e^x dx so v=exv = e^x
exx1/2dx=x1/2exex12x1/2dx\int e^x \cdot x^{1/2} dx = x^{1/2} \cdot e^x - \int e^x \cdot \dfrac{1}{2} \cdot x^{-1/2} dx

Notice that the second term is the negative of our second integral:
exx1/2dx+ex12x1/2dx=x1/2exex12x1/2dx+ex12x1/2dx\int e^x \cdot x^{1/2} dx + \int e^x \cdot \dfrac{1}{2} \cdot x^{-1/2} dx = x^{1/2} \cdot e^x - \int e^x \cdot \dfrac{1}{2} \cdot x^{-1/2} dx + \int e^x \cdot \dfrac{1}{2} \cdot x^{-1/2} dx
The last two integrals cancel out, giving us:
ex(2x+12x)dx=xex+C\int e^x \left(\dfrac{2x+1}{2\sqrt{x}}\right) dx = \sqrt{x} \cdot e^x + C

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question