CUET MathematicsCalculus > Mediumcore0<x<π30 < x < \frac{\pi}{3}0<x<3ππ3<x<π4\frac{\pi}{3} < x < \frac{\pi}{4}3π<x<4ππ4<x<π2\frac{\pi}{4} < x < \frac{\pi}{2}4π<x<2ππ2>x>0\frac{\pi}{2} > x > 02π>x>0✅ Correct Option: 1Related questions:14 May Shift 1Match List-I with List-II List-IList-II(A) The minimum value of f(x)=(2x−1)2+3(I) 4(B) The maximum value of f(x)=−∣x+1∣+4(II) 10(C) The minimum value of f(x)=sin(2x)+6(III) 3(D) The maximum value of f(x)=−(x−1)2+10(IV) 5\begin{array}{|l|l|} \hline \rule{0pt}{2.8ex}\text{List-I} & \text{List-II} \\[1.2ex] \hline \rule{0pt}{2.8ex}\text{(A) The minimum value of } f(x) = (2x - 1)^2 + 3 & \text{(I) } 4 \\[1.2ex] \hline \rule{0pt}{2.8ex}\text{(B) The maximum value of } f(x) = -|x + 1| + 4 & \text{(II) } 10 \\[1.2ex] \hline \rule{0pt}{2.8ex}\text{(C) The minimum value of } f(x) = \sin(2x) + 6 & \text{(III) } 3 \\[1.2ex] \hline \rule{0pt}{2.8ex}\text{(D) The maximum value of } f(x) = -(x - 1)^2 + 10 & \text{(IV) } 5 \\[1.2ex] \hline \end{array}List-I(A) The minimum value of f(x)=(2x−1)2+3(B) The maximum value of f(x)=−∣x+1∣+4(C) The minimum value of f(x)=sin(2x)+6(D) The maximum value of f(x)=−(x−1)2+10List-II(I) 4(II) 10(III) 3(IV) 5 Choose the correct answer from the options given below:13 May Shift 1In which of the following intervals, the function f(x)=−x2−2x+15f(x) = -x^2 - 2x + 15f(x)=−x2−2x+15 is decreasing?27 May Shift 1The interval on which the function f(x)=x3+2x2−1f(x) = x^3 + 2x^2 - 1f(x)=x3+2x2−1 is decreasing, is