JIPMAT 2023Algebra > Easy2+1\sqrt{2}+12+152+12\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}25+2172−12\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}27−2192−32\sqrt{\frac{9}{2}}-\sqrt{\frac{3}{2}}29−23✅ Correct Option: 2Related questions:JIPMAT 2024Choose the correct answer from the options given below :JIPMAT 20225+38−215+11+2306−5\frac{\sqrt{5}+\sqrt{3}}{\sqrt{8-2 \sqrt{15}}}+\frac{\sqrt{11+2 \sqrt{30}}}{\sqrt{6}-\sqrt{5}}8−2155+3+6−511+230JIPMAT 2021If 2x=3y=6−z2^{x} = 3^{y} = 6^{-z}2x=3y=6−z, then (1x+1y+1z)(\frac{1}{x} + \frac{1}{y} + \frac{1}{z})(x1+y1+z1) is equal to