JIPMATAlgebra > Easy2+1\sqrt{2}+12+152+12\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}25+2172−12\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}27−2192−32\sqrt{\frac{9}{2}}-\sqrt{\frac{3}{2}}29−23✅ Correct Option: 2Related questions:JIPMAT 2024Simplify : 0.06254+0.0083+0.09−162⋅5×3253\dfrac{\sqrt[4]{0.0625}+\sqrt[3]{0.008}+\sqrt{0.09}-1}{\sqrt[3]{62 \cdot 5 \times \sqrt[5]{32}}}362⋅5×53240.0625+30.008+0.09−1JIPMAT 20225+38−215+11+2306−5\frac{\sqrt{5}+\sqrt{3}}{\sqrt{8-2 \sqrt{15}}}+\frac{\sqrt{11+2 \sqrt{30}}}{\sqrt{6}-\sqrt{5}}8−2155+3+6−511+230JIPMAT 20252+3×2+2+3×2+2+2+3×2−2+2+3\sqrt{2+\sqrt{3}} \times \sqrt{2+\sqrt{2+\sqrt{3}}} \times \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \times \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}2+3×2+2+3×2+2+2+3×2−2+2+3 is equal to