CUET MathematicsGeometry > MediumcoreThere is no real value of x satisfying the above equation.There is one positive and one negative real value of xxx satisfying the above equation.There are two real positive values of x satisfying the above equation.There are two real negative values of xxx satisfying the above equation.✅ Correct Option: 2Related questions:19 May Shift 1The maximum value of sinx⋅cosx\sin x \cdot \cos xsinx⋅cosx is:19 May Shift 1Match List-I with List-II List-IList-II(A) cos−1x+cos−1(−x)\cos^{-1} x + \cos^{-1}(-x)cos−1x+cos−1(−x)(I) π3\frac{\pi}{3}3π(B) cosec−1(−x)+sec−1(−x)\text{cosec}^{-1}(-x) + \sec^{-1}(-x)cosec−1(−x)+sec−1(−x)(II) −π3-\frac{\pi}{3}−3π(C) tan−13−sec−1(−2)\tan^{-1}\sqrt{3} - \sec^{-1}(-2)tan−13−sec−1(−2)(III) π\piπ(D) tan−1(tan4π3)\tan^{-1}\left(\tan\frac{4\pi}{3}\right)tan−1(tan34π)(IV) π2\frac{\pi}{2}2π Choose the correct answer from the options given below:15 May Shift 1For the principal value branch, the value of sin(π2−sin−1(−32))\sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)sin(2π−sin−1(−23)) is