CUET MathematicsCalculus > Mediumcore000π4\frac{\pi}{4}4π∞\infty∞π12\frac{\pi}{12}12π✅ Correct Option: 1Related questions:14 May Shift 2If ∫dx(x−1)3/4,(x+2)5/4=a[1−g(x)]b+c\int \frac{dx}{(x-1)^3/^4,(x+2)^5/^4} = a[1 - g(x)]^b + c∫(x−1)3/4,(x+2)5/4dx=a[1−g(x)]b+c, where ccc is a constant of integration, then which of the following are true? (A) a=23a = \frac{2}{3}a=32 (B) β=34\beta = \frac{3}{4}β=43 (C) 3α+4β=53\alpha + 4\beta = 53α+4β=5 (D) g(x)=3(x+2)g(x) = \frac{3}{(x+2)}g(x)=(x+2)3 Choose the correct answer from the options given below:3 June Shift 1∫12x3−x+xdx\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3 - x} + \sqrt{x}} dx∫123−x+xxdx is equal to16 May Shift 1If the integral I=∫x21+xdx=23(1+x)3/2−8x15(1+x)3/2+2(1+x)5/215+CI = \int \frac{x^2}{\sqrt{1+x}} dx = \frac{2}{3}(1+x)^{3/2} - \frac{8x}{15}(1+x)^{3/2} + \frac{2(1+x)^{5/2}}{15} + CI=∫1+xx2dx=32(1+x)3/2−158x(1+x)3/2+152(1+x)5/2+C; C is constant of integration, then the value of a is: