CUET MathematicsCalculus > Mediumcore(A) - (I), (B) - (III), (C) - (IV), (D) - (II)(A) - (I), (B) - (IV), (C) - (III), (D) - (II)(A) - (II), (B) - (I), (C) - (III), (D) - (IV)(A) - (III), (B) - (IV), (C) - (II), (D) - (I)✅ Correct Option: 2Related questions:3 June Shift 2Match List-I with List-II List-IList-II(A) Degree of this differential equation d4ydx4+2loge(d3ydx3)=0\frac{d^4y}{dx^4} + 2\log_e\left(\frac{d^3y}{dx^3}\right) = 0dx4d4y+2loge(dx3d3y)=0(I) 1(B) Order of this differential equation e(dydx)3+3y(d2ydx2)3=0e^{\left(\frac{dy}{dx}\right)^3} + 3y\left(\frac{d^2y}{dx^2}\right)^3 = 0e(dxdy)3+3y(dx2d2y)3=0(II) 4(C) Degree of d4ydx4+(dydx)2=0\frac{d^4y}{dx^4} + \left(\frac{dy}{dx}\right)^2 = 0dx4d4y+(dxdy)2=0(III) not defined(D) Order of the differential equation 2d4ydx4+(d2ydx2)5=02\frac{d^4y}{dx^4} + \left(\frac{d^2y}{dx^2}\right)^5 = 02dx4d4y+(dx2d2y)5=0(IV) 2 Choose the correct answer from the options given below:14 May Shift 1Which of the following are linear first order differential equations? (A) dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)dxdy+P(x)y=Q(x) (B) dxdy+P(y)x=Q(y)\frac{dx}{dy} + P(y)x = Q(y)dydx+P(y)x=Q(y) (C) (x−y)dydx=x+2y(x - y)\frac{dy}{dx} = x + 2y(x−y)dxdy=x+2y (D) (1+x2)dydx+2xy=2(1 + x^2)\frac{dy}{dx} + 2xy = 2(1+x2)dxdy+2xy=2 Choose the correct answer from the options given below:14 May Shift 2The general solution of the differential equation dydx=ex−y+x2e−y\frac{dy}{dx} = e^{x-y} + x^2e^{-y}dxdy=ex−y+x2e−y is equal to: