JIPMAT 2025 (QA) - 2+sqrt(3) x 2+2+sqrt(3) x 2+2+2+sqrt(3) x 2-2+2+sqrt(3) is equal to | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Algebra
>
Indices

Hard

2+3×2+2+3×2+2+2+3×22+2+3\sqrt{2+\sqrt{3}} \times \sqrt{2+\sqrt{2+\sqrt{3}}} \times \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \times \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}} is equal to

Correct Option: 1
2+3×2+2+3×2+2+2+3×22+2+3\sqrt{2+\sqrt{3}} \times \sqrt{2+\sqrt{2+\sqrt{3}}} \times \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \times \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}
Let's define:
a=3a = \sqrt{3}
b=2+a=2+3b = \sqrt{2+a} = \sqrt{2+\sqrt{3}}
c=2+b=2+2+3c = \sqrt{2+b} = \sqrt{2+\sqrt{2+\sqrt{3}}}
d=2+c=2+2+2+3d = \sqrt{2+c} = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}
Our expression is then: b×c×d×2cb \times c \times d \times \sqrt{2-c}
The key insight is that these nested square roots form a pattern where: \newline b2=2+ab^2 = 2+a \newline c2=2+bc^2 = 2+b \newline d2=2+cd^2 = 2+c
From this, we get: \newline c22=bc^2-2 = b \newline d22=cd^2-2 = c
For the term 2c\sqrt{2-c}, note that:
2c×d=2c×2+c=(2c)(2+c)=4c2=4(2+b)=2b\sqrt{2-c} \times d = \sqrt{2-c} \times \sqrt{2+c} = \sqrt{(2-c)(2+c)} = \sqrt{4-c^2} = \sqrt{4-(2+b)} = \sqrt{2-b}
Similarly: \newline 2b×c=2b×2+b=4b2=4(2+a)=2a\sqrt{2-b} \times c = \sqrt{2-b} \times \sqrt{2+b} = \sqrt{4-b^2} = \sqrt{4-(2+a)} = \sqrt{2-a}
And: \newline 2a×b=2a×2+a=4a2=43=1=1\sqrt{2-a} \times b = \sqrt{2-a} \times \sqrt{2+a} = \sqrt{4-a^2} = \sqrt{4-3} = \sqrt{1} = 1
Therefore: \newline b×c×d×2cb \times c \times d \times \sqrt{2-c} \newline \newline b×c×2b=b×1=1b \times c \times \sqrt{2-b} = b \times 1 = 1
b×2a=1b \times \sqrt{2-a}=1
So the value of the given expression is 11.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question