JIPMAT 2025 (QA) - Which of the following statements is/are correct? A. If 2^x = 3^y = 6^-z, then 1/x + 1/y + 1/z = 0 B. (243)^0.16 x (9)^0.1 = 0.3 C. If 3.105 x 10^P = 0.00239 + 0.000715, then P = -3 | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Algebra
>
Linear Equations

Hard

Which of the following statements is/are correct? \newline \newline A. If 2x=3y=6z2^x = 3^y = 6^{-z}, then 1x+1y+1z=0\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \newline B. (243)0.16×(9)0.1=0.3(243)^{0.16} \times (9)^{0.1} = 0.3 \newline C. If 3.105×10P=0.00239+0.0007153.105 \times 10^P = 0.00239 + 0.000715, then P = -3

Correct Option: 4
It is best to first check the (B) statement from the given options.
B. (243)0.16×(9)0.1=0.3(243)^{0.16} \times (9)^{0.1} = 0.3 \newline LHS = (3)5×0.16×(3)2×0.1=3(0.80)×3(0.20)=31=3(3)^{5 \times{0.16}} \times (3)^{2 \times {0.1}} = 3^{(0.80)} \times 3^{(0.20)} = 3^1 = 3
Thus, B is an incorrect statement. \newline Hence, the only possible option is Option 4.

A. If 2x=3y=6z2^x = 3^y = 6^{-z}, then 1x+1y+1z=0\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \newline Given: 2x=3y=6z2^{x}=3^{y}=6^{-z}
Let: 2x=3y=6z=k (say) 2^{x}=3^{y}=6^{-z}=k \quad \text { (say) }
Now take logs: \newline - From 2x=k2^{x}=k, we get x=log2kx=\log _{2} k \newline - From 3y=k3^{y}=k, we get y=log3ky=\log _{3} k \newline - From 6z=k6^{-z}=k, take log: z=log6kz=log6k-z=\log _{6} k \Rightarrow z=-\log _{6} k
Now evaluate: \newline 1x+1y+1z=1log2k+1log3k+1log6k\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\log _{2} k}+\frac{1}{\log _{3} k}+\frac{1}{-\log _{6} k}
Use change of base: 1logbk=logkb\frac{1}{\log _{b} k}=\log _{k} b
So: =logk2+logk3logk6=logk(2×36)=logk(1)=0=\log _{k} 2+\log _{k} 3-\log _{k} 6=\log _{k}\left(\frac{2 \times 3}{6}\right)=\log _{k}(1)=0

C. 3.105×10P=0.00239+0.000715=0.0031053.105 \times 10^{P}=0.00239+0.000715=0.003105
Thus, 3.105×10P=0.00310510P=0.0031053.105=103P=33.105 \times 10^{P}=0.003105 \Rightarrow 10^{P}=\frac{0.003105}{3.105}=10^{-3} \Rightarrow P=-3

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question