JIPMAT 2025 (QA) - If x^3 + y^3 = 468 and x + y = 12, then value of x^4 + y^4 will be | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Algebra
>
Identities

Medium

If x3+y3=468x^3 + y^3 = 468 and x+y=12x + y = 12, then value of x4+y4x^4 + y^4 will be

Correct Option: 4
Given: \newline x3+y3=468x^{3}+y^{3}=468 and x+y=12x+y=12
Step 1: Find the product xyxy \newline Using the algebraic identity for the sum of cubes: \newline x3+y3=(x+y)33xy(x+y)x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y)
Substituting the given values: \newline 468=(12)33xy(12)468=(12)^{3}-3 xy(12) \newline 468=172836xy468=1728-36 x y \newline 36xy=172846836 x y=1728-468 \newline 36xy=126036 xy=1260 \newline xy=35x y=35
Step 2: Find x2+y2x^{2}+y^{2} \newline Using the identity for (x+y)2(x+y)^{2} : \newline (x+y)2=x2+2xy+y2(x+y)^{2}=x^{2}+2 x y+y^{2} \newline 122=x2+2(35)+y212^{2}=x^{2}+2(35)+y^{2} \newline 144=x2+70+y2144=x^{2}+70+y^{2} \newline x2+y2=74x^{2}+y^{2}=74
Step 3: Find x4+y4x^{4}+y^{4} \newline Using the identity: \newline x4+y4=(x2+y2)22(xy)2x^{4}+y^{4}=\left(x^{2}+y^{2}\right)^{2}-2(x y)^{2}
Substituting the values: \newline x4+y4=(74)22(35)2x^{4}+y^{4}=(74)^{2}-2(35)^{2} \newline x4+y4=54762(1225)x^{4}+y^{4}=5476-2(1225) \newline x4+y4=54762450x^{4}+y^{4}=5476-2450 \newline x4+y4=3026x^{4}+y^{4}=3026
Therefore, the value of x4+y4=3026x^{4}+y^{4}=3026 and the correct option is Option 4.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question