JIPMAT 2025Geometry > Easy173 m200 m273 m300 m✅ Correct Option: 3Related questions:JIPMAT 2024Given below are two statements: Statement I: cot30∘+1cot30∘−1=2(cos30∘+1)\frac{\cot 30^{\circ}+1}{\cot 30^{\circ}-1}=2\left(\cos 30^{\circ}+1\right)cot30∘−1cot30∘+1=2(cos30∘+1) Statement II : 2sin45∘cos45∘−tan45∘cot45∘=02 \sin 45^{\circ} \cos 45^{\circ}-\tan 45^{\circ} \cot 45^{\circ}=02sin45∘cos45∘−tan45∘cot45∘=0JIPMAT 2024If sinθ+cosθ=72\sin \theta+\cos \theta=\frac{\sqrt{7}}{2}sinθ+cosθ=27, then (sinθ−cosθ)(\sin \theta-\cos \theta)(sinθ−cosθ) is equal to :JIPMAT 2022Which of the following trigonometric identities are true? sin2(41∘)+sin2(49∘)=1sin2(60∘)−2tan(45∘)−cos2(30∘)=−1sin2(θ)+11+tan2(θ)=1\begin{aligned} & \sin ^2\left(41^{\circ}\right)+\sin ^2\left(49^{\circ}\right)=1 \\ & \sin ^2\left(60^{\circ}\right)-2 \tan \left(45^{\circ}\right)-\cos ^2\left(30^{\circ}\right)=-1 \\ & \sin ^2(\theta)+\frac{1}{1+\tan ^2(\theta)}=1 \end{aligned}sin2(41∘)+sin2(49∘)=1sin2(60∘)−2tan(45∘)−cos2(30∘)=−1sin2(θ)+1+tan2(θ)1=1