JIPMAT 2025 (QA) - A solid brass sphere of radius 21 cm is converted into a right circular cylindrical rod of length 28 cm. The ratio of total surface areas of the rod to sphere is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Geometry
>
Solids

Hard

A solid brass sphere of radius 21 cm is converted into a right circular cylindrical rod of length 28 cm. The ratio of total surface areas of the rod to sphere is :

Correct Option: 2
Let the radius of the cylindrical rod be rr.
Volume of the sphere: \newline Vsphere =43π×(21)3=4π×7×21×21V_{\text {sphere }}=\frac{4}{3} \pi \times (21)^{3}={4} \pi \times 7 \times 21 \times 21 cu. units
Since volume is conserved: \newline Vcylinder =πr2×28=4π×7×21×21V_{\text {cylinder }}=\pi r^{2} \times 28={4} \pi \times 7 \times 21 \times 21
r2=4×7×21×2128=441r^{2}=\dfrac{4\times 7 \times 21 \times 21}{28}=441
Thus, r=441=21r=\sqrt{441}=21

\newline Calculating the surface areas:
Surface area of the sphere: \newline Ssphere =4π×212S_{\text {sphere }}=4 \pi \times 21^{2}
Surface area of the cylinder (including the circular ends):
Scylinder =2πrh+2πr2S_{\text {cylinder }}=2 \pi r h+2 \pi r^{2}
=2π×21×28+2π×(21)2=2 \pi \times 21 \times 28+2 \pi \times (21)^{2}
=42π(28+21)= 42\pi(28+21)
=42π×49= 42 \pi \times 49
Finding the ratio
Scylinder Ssphere =42π×494π×(21)2\dfrac{S_{\text {cylinder }}}{S_{\text {sphere }}} =\dfrac{42 \pi \times 49}{4 \pi \times (21)^2}
=424×9=\dfrac{42}{4 \times 9}
=72×3=\dfrac{7}{2 \times 3}
=76=\dfrac{7}{6}
Therefore, the ratio of the total surface areas of the rod to the sphere is 76\dfrac{7}{6}. \newline Hence, the correct answer is Option 2.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question