JIPMAT 2025 (QA) - If a + b = 2c, then the value of a/a-c + b/b-c is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Algebra
>
Linear Equations

Medium

If a+b=2ca + b = 2c, then the value of aac+bbc\frac{a}{a-c} + \frac{b}{b-c} is

Correct Option: 3
While one can try solving this by simplifying the expression, the easiest way is to assume random values.
Let a=3a = 3 and b=5b = 5 \newline Thus, a+b=3+5=8=2cc=4a + b = 3 + 5 = 8 = 2c \rightarrow c= 4
Now, aac+bbc=334+554=31+51=3+5=2\frac{a}{a-c} + \frac{b}{b-c} = \frac{3}{3-4} + \frac{5}{5-4}= \frac{3}{-1} + \frac{5}{1} = -3+5 = 2

Now, let's verify with one more case.
Let a=3a = 3 and b=7b = 7 \newline Thus, a+b=3+7=10=2cc=5a + b = 3 + 7 = 10 = 2c \rightarrow c= 5
Now, aac+bbc=335+775=32+72=1.5+3.5=2\frac{a}{a-c} + \frac{b}{b-c} = \frac{3}{3-5} + \frac{7}{7-5}= \frac{3}{-2} + \frac{7}{2} = -1.5+3.5 = 2
Hence, the correct option is Option 3.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question