JIPMAT 2025 (QA) - If + / - = 3, then value of ^4 - ^4 is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Geometry
>
Trigonometry

Hard

If sinθ+cosθsinθcosθ=3\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 3, then value of sin4θcos4θ\sin^4\theta - \cos^4\theta is

Correct Option: 3
sinθ+cosθsinθcosθ=3\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = 3
sinθ+cosθ=3(sinθcosθ){\sin\theta + \cos\theta} = 3({\sin\theta - \cos\theta})
2cosθ=4sinθ2\cos\theta = 4{\sin\theta}
cosθ=2sinθ\cos\theta = 2 {\sin\theta}
Now, sin4θcos4θ=(sin2θ+cos2θ)(sin2θcos2θ)\sin^4\theta - \cos^4\theta = (\sin^2\theta + \cos^2\theta) (\sin^2\theta - \cos^2\theta)
=(sin2θ+cos2θ)(sinθ+cosθ)(sinθcosθ)= (\sin^2\theta + \cos^2\theta) (\sin\theta + \cos\theta) (\sin\theta - \cos\theta)
Substituting: cosθ=2sinθ\cos\theta = 2 {\sin\theta}
=(sin2θ+(2sinθ)2)(sinθ+2sinθ)(sinθ2sinθ)= (\sin^2\theta+ (2\sin\theta)^2) (\sin\theta + 2 sin\theta) (\sin\theta - 2 sin\theta) \newline =(5sin2θ)(3sinθ)(sinθ)= (5\sin^2\theta) (3\sin\theta ) (-\sin\theta ) \newline =15sin4θ= 15 \sin^4\theta
Now, we know sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1
sin2θ+4sin2θ=1\sin^2\theta + 4\sin^2\theta = 1 since, cosθ=2sinθ\cos\theta = 2 {\sin\theta}
=5sin2θ=1=5\sin^2\theta = 1 \newline =sin2θ=15=\sin^2\theta = \frac{1}{5}
Thus, 15sin4θ=15×(15)2=1525=3515 \sin^4\theta = 15 \times (\frac{1}{5})^2 = \frac{15}{25} = \frac{3}{5}
Hence, the correct option is Option 3.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question