JIPMAT 2025 (QA) - (4.53-3.07)^2/(3.07-2.15)(2.15-4.53) + (3.07-2.15)^2/(2.15-4.53)(4.53-3.07) + (2.15-4.53)^2/(4.53-3.07)(3.07-2.15) is simplified to | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Algebra
>
Identities

Hard

(4.533.07)2(3.072.15)(2.154.53)+(3.072.15)2(2.154.53)(4.533.07)+(2.154.53)2(4.533.07)(3.072.15)\frac{(4.53-3.07)^2}{(3.07-2.15)(2.15-4.53)} + \frac{(3.07-2.15)^2}{(2.15-4.53)(4.53-3.07)} + \frac{(2.15-4.53)^2}{(4.53-3.07)(3.07-2.15)} is simplified to

Correct Option: 4
Let: x=4.53x=4.53, y=3.07y=3.07 and z=2.15z=2.15
The original expression becomes:
(xy)2(yz)(zx)+(yz)2(zx)(xy)+(zx)2(xy)(yz)\dfrac{(x-y)^{2}}{(y-z)(z-x)}+\dfrac{(y-z)^{2}}{(z-x)(x-y)}+\dfrac{(z-x)^{2}}{(x-y)(y-z)}
=(xy)3+(yz)3+(zx)3(xy)(yz)(zx)= \dfrac{(x-y)^{3}+ (y-z)^{3} +(z -x)^{3}}{(x-y)(y-z)(z-x)}
Now, let (xy)=a,(yz)=b(x-y) = a , (y-z) = b and (zx)=c(z-x) = c
We observe, (a+b+c)=xy+yz+zx=0(a + b + c) = x-y+y-z+z-x = 0
Thus, a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc (since a+b+c=0a+b+c = 0)
Thus, the expression becomes:
=a3+b3+c3abc=3abcabc=3= \dfrac{a^3 + b^3 +c^3}{abc}= \dfrac{3abc}{abc} = 3
Hence, the correct option is Option 4.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question