JIPMAT 2025 (QA) - The value of 9991/7 + 9992/7 + 9993/7 + 9994/7 + 9995/7 + 9996/7 is equal to : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2025 (QA) PYQs

JIPMAT 2025

Algebra
>
Linear Equations

Easy

The value of 99917+99927+99937+99947+99957+99967999\frac{1}{7} + 999\frac{2}{7} + 999\frac{3}{7} + 999\frac{4}{7} + 999\frac{5}{7} + 999\frac{6}{7} is equal to :

Correct Option: 1
Basic learning:
1+0.5=1.51 + 0.5 = 1.5
This can be written as a fraction:
1.5=1121.5 = 1 \frac{1}{2}
This can also be written as:
112=1+12 1 \frac{1}{2} = 1 + \frac{1}{2}

Hence, question states:
99917+99927+99937+99947+99957+99967999\frac{1}{7} + 999\frac{2}{7} + 999\frac{3}{7} + 999\frac{4}{7} + 999\frac{5}{7} + 999\frac{6}{7}
This can be written as:
999+17+999+27+999+37+999+47+999+57+999+67999 + \frac{1}{7} + 999 + \frac{2}{7} + 999 + \frac{3}{7} + 999 + \frac{4}{7} + 999 + \frac{5}{7} + 999 + \frac{6}{7}
We can add the fractions separately. Also, 999999 appears six times:
6×999+(17+27+37+47+57+67)\Rightarrow 6 \times 999 + \left( \frac{1}{7} + \frac{2}{7} + \frac{3}{7} + \frac{4}{7} + \frac{5}{7} + \frac{6}{7} \right)
5994+(17+27+37+47+57+67)\Rightarrow 5994 + \left( \frac{1}{7} + \frac{2}{7} + \frac{3}{7} + \frac{4}{7} + \frac{5}{7} + \frac{6}{7} \right)
5994+217\Rightarrow 5994 + \frac{21}{7}
5994+3=5997\Rightarrow 5994 + 3 = \boxed{5997}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question