JIPMAT 2021 (QA) - If 2^x = 3^y = 6^-z, then (1/x + 1/y + 1/z) is equal to | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2021 (QA) PYQs

JIPMAT 2021

Algebra
>
Indices

Hard

If 2x=3y=6z2^{x} = 3^{y} = 6^{-z}, then (1x+1y+1z)(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) is equal to

Correct Option: 1
Let's call the common value aa.
2x=3y=6z=a2^x = 3^y = 6^{-z} = a

Converting to logarithmic form:
From 2x=a2^x = a, we get x=log2(a)x = \log_2(a)
From 3y=a3^y = a, we get y=log3(a)y = \log_3(a)
From 6z=a6^{-z} = a, we get z=log6(a)z = -\log_6(a)

Finding the reciprocals:
1x=1log2(a)\dfrac{1}{x} = \dfrac{1}{\log_2(a)}
1y=1log3(a)\dfrac{1}{y} = \dfrac{1}{\log_3(a)}
1z=1log6(a)=1log6(a)\dfrac{1}{z} = \dfrac{1}{-\log_6(a)} = -\dfrac{1}{\log_6(a)}

Using the change of base formula to standardize:
log3(a)=log2(a)log2(3)\log_3(a) = \dfrac{\log_2(a)}{\log_2(3)}
log6(a)=log2(a)log2(6)\log_6(a) = \dfrac{\log_2(a)}{\log_2(6)}
This gives:
1y=log2(3)log2(a)\dfrac{1}{y} = \dfrac{\log_2(3)}{\log_2(a)}
1z=log2(6)log2(a)\dfrac{1}{z} = -\dfrac{\log_2(6)}{\log_2(a)}

Adding the fractions:
1x+1y+1z=1log2(a)+log2(3)log2(a)log2(6)log2(a)=1+log2(3)log2(6)log2(a)\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = \dfrac{1}{\log_2(a)} + \dfrac{\log_2(3)}{\log_2(a)} - \dfrac{\log_2(6)}{\log_2(a)}= \dfrac{1 + \log_2(3) - \log_2(6)}{\log_2(a)}

Since log2(6)=log2(2×3)=log2(2)+log2(3)=1+log2(3)\log_2(6) = \log_2(2 \times 3) = \log_2(2) + \log_2(3) = 1 + \log_2(3):
1+log2(3)log2(6)log2(a)=1+log2(3)(1+log2(3))log2(a)=0log2(a)=0\dfrac{1 + \log_2(3) - \log_2(6)}{\log_2(a)} = \dfrac{1 + \log_2(3) - (1 + \log_2(3))}{\log_2(a)} = \dfrac{0}{\log_2(a)} = 0

1x+1y+1z=0\therefore \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 0

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question