JIPMAT 2023Algebra > Easy2+1\sqrt{2}+12+152+12\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}25+2172−12\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}27−2192−32\sqrt{\frac{9}{2}}-\sqrt{\frac{3}{2}}29−23✅ Correct Option: 2Related questions:2+3×2+2+3×2+2+2+3×2−2+2+3\sqrt{2+\sqrt{3}} \times \sqrt{2+\sqrt{2+\sqrt{3}}} \times \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \times \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}2+3×2+2+3×2+2+2+3×2−2+2+3 is equal toIf 2x=3y=6−z2^{x} = 3^{y} = 6^{-z}2x=3y=6−z, then (1x+1y+1z)(\frac{1}{x} + \frac{1}{y} + \frac{1}{z})(x1+y1+z1) is equal toSimplify : 0.06254+0.0083+0.09−162⋅5×3253\dfrac{\sqrt[4]{0.0625}+\sqrt[3]{0.008}+\sqrt{0.09}-1}{\sqrt[3]{62 \cdot 5 \times \sqrt[5]{32}}}362⋅5×53240.0625+30.008+0.09−1