JIPMATAlgebra > Easy2+1\sqrt{2}+12+152+12\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}25+2172−12\sqrt{\frac{7}{2}}-\sqrt{\frac{1}{2}}27−2192−32\sqrt{\frac{9}{2}}-\sqrt{\frac{3}{2}}29−23✅ Correct Option: 2Related questions:JIPMAT 2020225+38−215+11+2306−5\frac{\sqrt{5}+\sqrt{3}}{\sqrt{8-2 \sqrt{15}}}+\frac{\sqrt{11+2 \sqrt{30}}}{\sqrt{6}-\sqrt{5}}8−2155+3+6−511+230JIPMAT 202024Choose the correct answer from the options given below :JIPMAT 2020252+3×2+2+3×2+2+2+3×2−2+2+3\sqrt{2+\sqrt{3}} \times \sqrt{2+\sqrt{2+\sqrt{3}}} \times \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \times \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}2+3×2+2+3×2+2+2+3×2−2+2+3 is equal to