JIPMATGeometry > HardBoth Statement I and Statement II are trueBoth Statement I and Statement II are falseStatement I is true but Statement II is falseStatement I is false but Statement II is true✅ Correct Option: 1Related questions:JIPMAT 202022Which of the following trigonometric identities are true? sin2(41∘)+sin2(49∘)=1sin2(60∘)−2tan(45∘)−cos2(30∘)=−1sin2(θ)+11+tan2(θ)=1\begin{aligned} & \sin ^2\left(41^{\circ}\right)+\sin ^2\left(49^{\circ}\right)=1 \\ & \sin ^2\left(60^{\circ}\right)-2 \tan \left(45^{\circ}\right)-\cos ^2\left(30^{\circ}\right)=-1 \\ & \sin ^2(\theta)+\frac{1}{1+\tan ^2(\theta)}=1 \end{aligned}sin2(41∘)+sin2(49∘)=1sin2(60∘)−2tan(45∘)−cos2(30∘)=−1sin2(θ)+1+tan2(θ)1=1JIPMAT 202023In △ABC,∠B=90∘,BC=5 cm,AC−AB=1 cm\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{BC}=5 \ \mathrm{cm}, \mathrm{AC}-\mathrm{AB}=1 \mathrm{~cm}△ABC,∠B=90∘,BC=5 cm,AC−AB=1 cm, then 1+sin(C)1+cos(C)\frac{1+\sin (\mathrm{C})}{1+\cos (\mathrm{C})}1+cos(C)1+sin(C) isJIPMAT 202023If sin(θ)−cos(θ)=0\sin (θ) - \cos (θ) = 0sin(θ)−cos(θ)=0, the value of sin4 (θ) + cos4 (θ) is: