IPMAT Indore 2019Algebra > Hard31323029✅ Correct Option: 1Related questions:IPMAT Indore 2019The number of terms common to both the arithmetic progressions 2,5,8,11,...,1792, 5, 8, 11, ..., 1792,5,8,11,...,179 and 3,5,7,9,...,1013, 5, 7, 9, ..., 1013,5,7,9,...,101 isIPMAT Indore 2025If the sum of the first 212121 terms of the sequence: lnab,lnabb,lnab2,lnab2b,…\ln \frac{a}{b}, \ln \frac{a}{b \sqrt{b}}, \ln \frac{a}{b^{2}}, \ln \frac{a}{b^{2} \sqrt{b}}, \ldotslnba,lnbba,lnb2a,lnb2ba,… is lnambn\ln \frac{a^{m}}{b^{n}}lnbnam, then the value of m+nm+nm+n is \qquadIPMAT Indore 2020If 112+122+132+…\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots121+221+321+… up to ∞=π26\infty = \frac{\pi^2}{6}∞=6π2, then the value of 112+132+152+…\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots121+321+521+… up to ∞\infty∞ is