IPMAT Indore 2019Algebra > Hard312No real values of x satisfies the inequality✅ Correct Option: 2Related questions:IPMAT Indore 2019The set of values of xxx which satisfy the inequality 0.7(2x2−3x+4)<0.3430.7^{(2x^2 - 3x + 4)} < 0.3430.7(2x2−3x+4)<0.343 isIPMAT Indore 2023The set of all real values of x satisfying the inequality x2(x+1)(x−1)(2x+1)3>0\dfrac{x^2(x+1)}{(x-1)(2x+1)^3} > 0(x−1)(2x+1)3x2(x+1)>0 isIPMAT Indore 2020Consider the following statements: (i) When (0<x<1)(0 < x < 1)(0<x<1), then (11+x<1−x+x2)(\frac{1}{1+x} < 1 - x + x^2)(1+x1<1−x+x2) (ii) When (0<x<1)(0 < x < 1)(0<x<1), then (11+x>1−x+x2)(\frac{1}{1+x} > 1 - x + x^2)(1+x1>1−x+x2) (iii) When (−1<x<0)(-1 < x < 0)(−1<x<0), then (11+x<1−x+x2)(\frac{1}{1+x} < 1 - x + x^2)(1+x1<1−x+x2) (iv) When (−1<x<0)(-1 < x < 0)(−1<x<0), then (11+x>1−x+x2)(\frac{1}{1+x} > 1 - x + x^2)(1+x1>1−x+x2) Then the correct statements are: