IPMAT IndoreModern Math > Mediumf(x)>g(x)>0f(x) > g(x) > 0f(x)>g(x)>0 for 0<a<10 < a < 10<a<1 and g(x)>f(x)>0g(x) > f(x) > 0g(x)>f(x)>0 for a>1a > 1a>1g(x)>f(x)>0g(x) > f(x) > 0g(x)>f(x)>0 for 0<a<10 < a < 10<a<1 and f(x)>g(x)>0f(x) > g(x) > 0f(x)>g(x)>0 for a>1a > 1a>1f(x)>g(x)>0f(x) > g(x) > 0f(x)>g(x)>0 for a>0a > 0a>0g(x)>f(x)>0g(x) > f(x) > 0g(x)>f(x)>0 for a>0a > 0a>0✅ Correct Option: 1Related questions:IPMAT Indore 2022The set of real values of xxx for which the inequality log278≤log3x<91log23\log _{27} 8 \leq \log _{3} x \lt 9^{\frac{1}{\log _{2} 3}}log278≤log3x<9log231 holds isIPMAT Indore 2024If 4log2x−4x+9log3y−16y+68=04^{\log_2{x}} - 4x + 9^{\log_3{y}} - 16y + 68 = 04log2x−4x+9log3y−16y+68=0, then y−xy - xy−x equals:IPMAT Indore 2024The numbers 220242^{2024}22024 and 520245^{2024}52024 are expanded and their digits are written out consecutively on one page. The total number of digits written on the page is