IPMAT IndoreAlgebra > Hardpositive and monotonically increasing for x ∈(−∞,5−572)\in (-\infty, \frac{5-\sqrt{57}}{2})∈(−∞,25−57) and x ∈(5+572,+∞)\in (\frac{5+\sqrt{57}}{2}, +\infty)∈(25+57,+∞)negative and monotonically decreasing for x ∈(−∞,5−572)\in (-\infty, \frac{5-\sqrt{57}}{2})∈(−∞,25−57) and x ∈(5+572,+∞)\in (\frac{5+\sqrt{57}}{2},+\infty)∈(25+57,+∞)negative and monotonically increasing for x ∈(−∞,5−572)\in (-\infty, \frac{5-\sqrt{57}}{2})∈(−∞,25−57) and positive and monotonically increasing for x ∈(5+572,+∞)\in (\frac{5+\sqrt{57}}{2},+\infty)∈(25+57,+∞)positive and monotonically increasing for x ∈(−∞,5−572)\in (-\infty, \frac{5-\sqrt{57}}{2})∈(−∞,25−57) and negative and monotonically decreasing for x ∈(5+572,+∞)\in (\frac{5+\sqrt{57}}{2},+\infty)∈(25+57,+∞)✅ Correct Option: 3Related questions:IPMAT Indore 2019A real-valued function fff satisfies the relation f(x)f(y)=f(2xy+3)+3f(x+y)−3f(y)+6yf(x)f(y) = f(2xy + 3) + 3f(x + y) - 3f(y) + 6yf(x)f(y)=f(2xy+3)+3f(x+y)−3f(y)+6y, for all real numbers xxx and yyy, then the value of f(8)f(8)f(8) isIPMAT Indore 2020Given f(x)=x2+log3xf(x) = x^2 + \log_3 xf(x)=x2+log3x and g(y)=2y+f(y)g(y) = 2y + f(y)g(y)=2y+f(y), then the value of g(3)g(3)g(3) equalsIPMAT Indore 2021If a function f(a)=max(a,0)f(a) = max (a, 0)f(a)=max(a,0) then the smallest integer value of xxx for which the equation f(x−3)+2f(x+1)=8f(x - 3) + 2f(x + 1) = 8f(x−3)+2f(x+1)=8 holds true is _______.