JIPMAT 2024Geometry > Hard012\frac{1}{2}2112\sqrt{2}2✅ Correct Option: 2Related questions:JIPMAT 2024In △ABC,∠B=90∘,BC=5 cm,AC−AB=1 cm\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{BC}=5 \ \mathrm{cm}, \mathrm{AC}-\mathrm{AB}=1 \mathrm{~cm}△ABC,∠B=90∘,BC=5 cm,AC−AB=1 cm, then 1+sin(C)1+cos(C)\frac{1+\sin (\mathrm{C})}{1+\cos (\mathrm{C})}1+cos(C)1+sin(C) isJIPMAT 2024If sin(θ)−cos(θ)=0\sin (θ) - \cos (θ) = 0sin(θ)−cos(θ)=0, the value of sin4 (θ) + cos4 (θ) is:JIPMAT 2024Given below are two statement: Statement I: If sin(θ)=513\sin (\theta)=\frac{5}{13}sin(θ)=135, then the value of tan(θ)=512\tan (\theta)=\frac{5}{12}tan(θ)=125 Statement II: if cot(θ)=125\cot (\theta)=\frac{12}{5}cot(θ)=512, then the value of sin(θ)=512\sin (\theta)=\frac{5}{12}sin(θ)=125 In the light of the above statements, choose the correct answer form the question below: