IPMAT IndoreAlgebra > Medium18\frac{1}{8}8112\frac{1}{2}2113226\frac{3^{2}}{2^{6}}2632✅ Correct Option: 1Watch NowNo. of Relations/FunctionsRelated questions:IPMAT Indore 2024Let fff and ggg be two functions defined by f(x)=∣x+∣x∣∣f(x) = |x + |x||f(x)=∣x+∣x∣∣ and g(x)=1xg(x) = \frac{1}{x}g(x)=x1 for x≠0x \neq 0x=0. If f(a)+g(f(a))=136f(a) + g(f(a)) = \frac{13}{6}f(a)+g(f(a))=613 for some real aaa, then the maximum possible value off(g(a)) f(g(a))f(g(a)) is:IPMAT Indore 2021Suppose that a real-valued function f(x)f(x)f(x) of real numbers satisfies f(x+xy)=f(x)+f(xyf(x + xy) = f(x) + f(xyf(x+xy)=f(x)+f(xy) for all real x,y,x, y,x,y, and that f(2020)=1f(2020) = 1f(2020)=1. Compute f(2021)f(2021)f(2021).IPMAT Indore 2019The function f(x)=x3−5x2−8x3f(x) = \dfrac{x^3 - 5x^2 - 8x}{3}f(x)=3x3−5x2−8x is