IPMAT IndoreAlgebra > Medium18\frac{1}{8}8112\frac{1}{2}2113226\frac{3^{2}}{2^{6}}2632✅ Correct Option: 1Related questions:IPMAT Indore 2021Suppose that a real-valued function f(x)f(x)f(x) of real numbers satisfies f(x+xy)=f(x)+f(xyf(x + xy) = f(x) + f(xyf(x+xy)=f(x)+f(xy) for all real x,y,x, y,x,y, and that f(2020)=1f(2020) = 1f(2020)=1. Compute f(2021)f(2021)f(2021).IPMAT Indore 2019A real-valued function fff satisfies the relation f(x)f(y)=f(2xy+3)+3f(x+y)−3f(y)+6yf(x)f(y) = f(2xy + 3) + 3f(x + y) - 3f(y) + 6yf(x)f(y)=f(2xy+3)+3f(x+y)−3f(y)+6y, for all real numbers xxx and yyy, then the value of f(8)f(8)f(8) isIPMAT Indore 2023If f(1)=1f(1) = 1f(1)=1 and f(n)=3n−f(n−1)f(n) = 3n - f(n - 1)f(n)=3n−f(n−1) for all integers n>1n > 1n>1 , then the value of f(2023)f(2023)f(2023) is