IPMAT IndoreAlgebra > Medium79\frac{7}{9}9723\frac{2}{3}3249\frac{4}{9}9413\frac{1}{3}31✅ Correct Option: 2Related questions:IPMAT Indore 2022A new sequence is obtained from the sequence of positive integers (1,2,3,…)(1,2,3, \ldots)(1,2,3,…) by deleting all the perfect squares. Then the 2022nd 2022^{\text {nd }}2022nd term of the new sequence is ________.IPMAT Indore 2025Given that 1+122+132+142+...=π261 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... = \frac{\pi^2}{6}1+221+321+421+...=6π2, the value of 1+132+152+172+...1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + ...1+321+521+721+... isIPMAT Indore 2023If f(n)=1+2+3+⋯+(n+1)f(n)= 1 + 2 + 3 +\cdots+(n+1) f(n)=1+2+3+⋯+(n+1) and g(n)=∑k=1k=n1f(k)g(n)= \sum_{k=1}^{k=n} \dfrac{1}{f(k)}g(n)=∑k=1k=nf(k)1, then the least value of nnn for which g(n)g(n)g(n) exceeds the value 99100\dfrac{99}{100}10099 is: